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Introduction
In 1952, Ogden Bruton first reported X-linked agam-
maglobulinemia (XLA), which is a primary immunode-
ficiency disease, in an 8-year-old boy who complained 
of recurrent bacterial sepsis, otitis, and osteomyelitis, 
manifested by a notably decreased B-cell number and 
decreased serum immunoglobulin levels [1]. In 1993, the 
genetic basis of XLA was discovered as a mutation in a 
coding sequence of protein-tyrosine kinase and named 
after Bruton as Bruton’s tyrosine kinase (BTK) [2]. BTK is 
a 659 amino acid protein forming five signaling domains, 
which enable it to transmit and amplify signals from vari-
ous cell surface receptors involved in the transmission of 
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Abstract
Bruton’s tyrosine kinase (BTK), a nonreceptor tyrosine kinase, plays a remarkable role in the transmission and 
amplification of extracellular signals to intracellular signaling pathways. Various types of cells use the BTK pathway 
to communicate, including hematopoietic cells particularly B cells and T cells. The BTK pathway plays a role in 
controlling the proliferation, survival, and functions of B cells as well as other myeloid cells. First, second, and 
third-generation BTK inhibitors are currently being evaluated for the treatment of immune-mediated diseases in 
addition to B cell malignancies. In this article, the available evidence on the action mechanisms of BTK inhibitors is 
reviewed. Then, the most recent data obtained from preclinical studies and ongoing clinical trials for the treatment 
of autoimmune diseases, such as pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, systemic lupus 
erythematosus, Sjögren’s disease, rheumatoid arthritis, systemic sclerosis, multiple sclerosis, myasthenia gravis, and 
inflammatory diseases such as psoriasis, chronic spontaneous urticaria, atopic dermatitis, and asthma are discussed. 
In addition, adverse effects and complications associated with BTK inhibitors as well as factors predisposing 
patients to BTK inhibitors complications are discussed.
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extracellular signals to intracellular signaling pathways 
[3]. As a non-receptor tyrosine kinase, BTK is expressed 
in most hematopoietic cells, especially in B cells, lead-
ing to the development and activation of B cells through 
B-cell antigen receptor (BCR) and Toll-like receptor 
(TLR) signaling [4–6]. BTK signaling contribute to the 
pathogenesis of autoimmune disease in synergy with 
TLR-mediated pathways [5, 7, 8]. Indeed, antigens bind 
to BCR and activate BTK, leading to phospholipase-Cγ 
(PLC-γ) signaling, which in turn activates the NF-κB 
and MAP kinase pathways, triggering the expression 
of CD40, CD86, and CD69 on B cells that promote B 
cell activation and proliferation [9–12]. BTK remark-
ably activates the BCR signaling pathway leading to dif-
ferentiation of B cells into self-reactive B cells as seen in 
autoimmune diseases [13, 14]. BTK also activates innate 
immune cells, including macrophages, mast cells, baso-
phils, and neutrophils [15].

While multiple nonsteroidal anti-inflammatory drugs 
(NSAIDs), corticosteroids, and biologics are available 
for the treatment of immune-mediated diseases, many 
patients still do not achieve disease remission with avail-
able agents. Rituximab leads to some degrees of disease 
control by targeting B cell-dependent pathways; that 
being the case, BTK inhibitors (BTKIs), which also target 
B-cell-related pathways might be useful as independent 
therapies or adjuncts to the current treatment options. 
In the absence of BTK, BCR signaling is insufficient to 
induce B cell differentiation into mature peripheral B 
cells, which leads to impaired proliferation of B cells, 
expression of activation markers, production of anti-
bodies and cytokines, and defective immune responses 
against infections. BTK inhibition represents a promis-
ing therapeutic approach for the treatment of immune-
mediated diseases, as it has shown remarkable efficacy 
in the treatment of B-cell malignancies such as chronic 
lymphocytic leukemia (CLL), marginal zone lymphoma 
(MZL), Waldenström macroglobulinemia (WM), mantle 
cell lymphoma (MCL), various B-cell lymphomas, and 
chronic graft-versus-host disease (GvHD) [16].

In comparison with chemo-immunotherapy, BTKIs 
increased the treatment efficacy of B cell malignancies in 
patients with high-risk features and showed a better tol-
erability in frail older patients [3]. As the BTKIs target the 
ATP-binding site, they are classified into three categories, 
namely covalent irreversible inhibitors, covalent revers-
ible inhibitors, and non-covalent reversible inhibitors. 
The first covalent irreversible BTKI for the treatment of 
B-cell tumors, ibrutinib that binds covalently to the cys-
teine-481 binding site of BTK, was approved by the Food 
and Drug Administration (FDA) in 2013 and has brought 
a promising idea for the treatment of immune-mediated 
diseases. These reversible covalent inhibitors dissoci-
ate from common thiols while maintaining sustained 

inhibition of a protein with a conserved cysteine, provid-
ing selectivity [17]. Non-covalent BTKi inhibits BTK by 
different mechanisms to covalent BTKi such as blocking 
ATP binding site of BTK, forming the hydrogen bonds, 
or decreasing surface expression of B-cell activation 
markers, but not by binding to the C481 site on BTK [18]. 
Therefore, non-covalent BTKi is considered a potential 
alternative therapeutic option for patients who developed 
acquired resistance due to BTK C481 mutations.

Herein, the available evidence on the action mecha-
nisms, efficacy, safety, and side effects of BTKIs is 
reviewed. Then, the recent data obtained from preclinical 
studies and clinical trials of BTKIs for the treatment of 
autoimmune diseases such as pemphigus vulgaris, pem-
phigus foliaceus, bullous pemphigoid, systemic lupus 
erythematosus, Sjögren’s disease, rheumatoid arthritis, 
systemic sclerosis, multiple sclerosis, myasthenia gra-
vis, and inflammatory diseases such as psoriasis, chronic 
spontaneous urticaria, atopic dermatitis, and asthma are 
discussed. In addition, BTKIs-related complications and 
dermatological toxicity are reviewed.

BTK signaling
Malignant B cells such as CLL cells, MCL cells, and 
other stromal cells such as monocyte-derived nurse-
like cells (NLC), called lymphoma-associated macro-
phages (LAM), and T lymphocytes reside in secondary 
lymphatic organs (i.e., lymph nodes, spleen, and tonsils) 
constituting the marrow or lymphoid tissue microenvi-
ronments [19] (Fig.  1). Chemokine receptors and adhe-
sion molecules establish communication between cells in 
the microenvironment. Two pathways activate BCR sig-
naling: (1) soluble or surface-bound antigens, (2) homo-
typic interactions of two BCR molecules. NLC/LAM 
express B cell-activating factor (BAFF), tumor necrosis 
factor (TNF) family members, and APRIL (also known 
as TNFSF13), which activate corresponding receptors on 
malignant B cells such as BAFF-receptor (BAFF-R), B cell 
maturation antigen (BCMA), and TACI (also known as 
TNFRSF13B) to trigger proliferation and survival signals. 
Activated T helper cells express CD40 ligand (CD154) on 
its surface to interact with CD40, leading to proliferation 
and growth of malignant B cells. NLCs and other stromal 
cells secrete chemokines, such as CXCL12 and CXCL13 
and express CD31 on surface to interact with CD38 on 
the surface of malignant B cells. Activated CD38 engages 
with ZAP-70, resulting in downstream survival path-
ways. Cell-to-cell adhesion is established by integrins, 
particularly VLA-4 integrin (CD49d) on the surface of 
malignant B cells, and chemokine receptors. Stimula-
tion of the BCR complex (BCR and CD79a, b) also acti-
vates SYK and ZAP-70. Stimulated NLC/LAM secret 
chemotactic factors such as chemokines CXCL12 and 
CXCL13 to attract malignant B cells such as CLL cells 
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to the microenvironment via CXCR4 and CXCR5 recep-
tors on the CLL cells. BTK is expressed by B cells, NLC, 
and LAM, contributing to the signaling of other surface 
receptors, such as CXCR4, CXCR5, and adhesion mol-
ecules (integrins).

BTK as a therapeutic target
BTKIs target BCR signaling cascade (Fig. 2). As a result, 
BTKIs disrupt the B cells’ microenvironment, which 
explains the redistribution of lymphocytosis interactions 
in well-treated CLL patients [3]. To date, studies have 

shown that BTKIs limit the expression and upregulation 
of CD69, and co-stimulatory molecules such as CD80 
and CD86 through the phosphatidylinositol 3 kinase 
(PI3K)/ protein kinase B (PKB, also known as AKT)/ 
mammalian target of rapamycin (mTOR) pathway, which 
all are responsible for the induction of B cell activation 
[20]. In detail, BTKIs decrease the phosphorylation of 
AKT and suppresses AKT activity. Inhibition of either 
AKT, PI3K, or mTOR pathways reduces the expression of 
co-stimulatory molecules such as CD80 and CD86 [20]. 
BTKIs also affect the B-T cells interactions by decreasing 

Fig. 1  The figure discusses the interaction and signaling between NLCs, LAMs, and malignant B cells [19]. NLC/LAM expresses BAFF, APRIL, and TNF 
family members, which activate receptors on malignant B cells such as BAFF-R, BCMA, and TACI. Additionally, activated T helper cells express CD154 to 
interact with CD40, promoting the proliferation of malignant B cells. NLCs and stromal cells express CD31, which interacts with CD38 on malignant B cells, 
activating survival pathways. Cell-to-cell adhesion involves integrins and chemokine receptors, particularly VLA-4 integrins and chemokines CXCL12 and 
CXCL13. BTK is expressed by B cells, NLCs, and LAMs, contributing to signaling from other receptors and molecules
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polyclonal proliferation of both CD8 + and CD4 + T cells 
and cellular expression of pro-inflammatory cytokines 
of Th17 and Th1, interferon gamma (IFN-γ), and TNF-α. 
BTKIs also modulate B cell metabolic processes through 
reducing B cell mitochondrial respiration, selectively for 
activated B cells. Since mitochondrial respiration is more 
important for B cell’s co-stimulatory molecule expression 
than glycolysis, inhibition of mitochondrial respiration 
leads to reduced B cell activation [20]. B cells stimulate 
T cells in response to myelin basic protein to secrete pro-
inflammatory cytokines such as IFN-γ and TNF-α [21]. 
Hence, decreased activation of B cells reduces the stim-
ulation of T cells. In conclusion, BTKIs regulate B cell 
mitochondrial metabolism and limit the expression of 
pro-inflammatory cytokines in both B and T cells.

BTK inhibitors
In terms of mechanism of action, BTK inhibitors 
(BTKis) are classified into two main groups, reversible 
and irreversible BTKIs, based on the binding mode. 
Furthermore, based on the chemical interatomic link-
age, BTKIs are classified into two groups, covalent and 
non-covalent BTKIs [22]. Covalent irreversible BTKIs 
bind cysteine 481 (C481) in the ATP-binding site of 
BTK by covalent irreversible bonds, resulting in block-
age of the phosphorylation of downstream kinases in 
the BCR signaling pathway, thus blocking B cell acti-
vation. Covalent irreversible BTKIs consist of ibruti-
nib (Imbruvica), acalabrutinib (Calquence (ACP-196)), 
zanubrutinib (Brukinsa), evobrutinib, remibrutinib 
(LOU064), elsubrutinib, tolebrutinib (SAR442168), 

Fig. 2  The BTK inhibitors limit the expression and upregulation of CD69 and co-stimulatory molecules CD80 and CD86 through the PI3K/AKT/mTOR 
pathway, which is responsible for B cell activation [20]. BTKi reduces AKT phosphorylation and activity, leading to decreased expression of CD80 and 
CD86 [20]. Moreover, BTKi decreases the polyclonal proliferation of CD8 + and CD4 + T cells and their production of pro-inflammatory cytokines [21]. It 
also modulates B cell metabolic processes by reducing mitochondrial respiration, which is important for B cell activation. These effects result in decreased 
B cell stimulation of T cells and limited expression of pro-inflammatory cytokines from both B cells and T cells
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orelabrutinib, branebrutinib (BMS-986195), poseltinib, 
tirabrutinib hydrochloride (Velexbru) (GS-4059), spe-
brutinib (CC-292), SHR1459, TAS5315, AC0058TA, 
and BI-BTK-1. Ibrutinib is the first-generation of 
BTKIs and is approved to treat several B cell malig-
nancies such as chronic lymphocytic leukemia (CLL), 
small lymphocytic lymphoma (SLL), Waldenström 
macroglobulinemia (WM), chronic graft versus host 
disease (GvHD) (after the failure of ≥ 1 lines of sys-
temic therapy), mantle cell lymphoma (MCL) (after ≥ 1 
prior therapy), and marginal zone lymphoma (MZL) 
(requiring systemic therapy and having received at 
least 1 prior anti-CD20-based therapy) [23]. Although 
the efficacy of ibrutinib is satisfying against the men-
tioned malignancies in clinics, off-target toxicities and 
drug resistance are reported. Thus, second-generation 
of BTKIs are developed such as acalabrutinib and zanu-
brutinib [24–26]. Non-covalent reversible inhibitors do 
not bind to the C481 site of BTK, but share the cyste-
ine 481 binding site and are useful in patients with B 
cell malignancies resistant to prior therapy with cova-
lent BTKIs. Despite being less advanced compared to 
irreversible BTKIs, reversible inhibitors have shown 
to be more effective for the treatment of autoimmune 
diseases, including rheumatoid arthritis, multiple scle-
rosis, systemic lupus erythematosus, and graft ver-
sus host disease (GvHD). Non-covalent reversible 
inhibitors consist of fenebrutinib (GDC-0853) and 
nemtabrutinib. Covalent reversible inhibitors consist 
of rilzabrutinib (PRN1008), BMS-986142, BIIB091. 
PRN473 (SAR444727) is both non-covalent and cova-
lent reversible BTKI [6]. BTK inhibitors and their clas-
sifications are shown in Table 1.

BTKI in autoimmune diseases
Autoimmune blistering disorders
Pemphigus is an autoimmune disease characterized by 
painful blisters and erosions. In pemphigus, the immune 
system mistakenly attacks cells in the epidermis and the 
mucous membranes by immunoglobulin type G (IgG) 
autoantibodies against desmogleins, the adhesion pro-
teins that bind keratinocytes to one another. When the 
bonds are disrupted, fluid collects between the epider-
mis layers, forming blisters. Pemphigus can be classified 
into two primary subtypes: pemphigus vulgaris (PV), 
in which blisters form in the mouth and other mucosal 
surfaces in addition to the skin and causes agonizing 
oral erosions, and pemphigus foliaceus (PF), which only 
affects the skin [27]. In pemphigus, activated T cells ini-
tiate an autoimmune cascade, which induces activated B 
lymphocytes to synthesize anti-desmoglein antibodies 
[28]. In pemphigus, activated neutrophils, eosinophils, 
and mast cells of the innate immune system accumulate 
in the lesions’ infiltrates [27]. Therefore, treatments have 
to target both adaptive and innate immune pathways. 
Although systemic corticosteroids are the mainstay of 
treatment (moderate to high doses of oral prednisone or 
prednisolone, or intravenous methylprednisolone), long 
time corticosteroid therapy may result in serious side 
effects such as gastritis, hypertension, diabetes mellitus, 
and osteoporosis. In bullous pemphigoid, IgG +/- IgE 
antibodies and activated T lymphocytes attack the base-
ment membrane of the epidermis. The target is the pro-
tein BP180 (also known as type XVII collagen), or less 
frequently, BP230, a plakin. BP180 and BP230 are asso-
ciated with the hemidesmosomes, structures that bind 
the epidermal keratinocytes to the dermis. Binding of 

Table 1  BTK inhibitors classification
BTKi classification Mechanism of action Inhibitors
Covalent irreversible Binding covalently to the cysteine-481 binding 

site of BTK by covalent irreversible bonds, 
resulting in blockage of the phosphorylation 
of downstream kinases in the BCR signaling 
pathway, thus blocking B cell activation

First-generation Ibrutinib (Imbruvica)
Second-generation Acalabrutinib (Calquence 

(ACP-196)), Zanubrutinib 
(Brukinsa), Evobrutinib, 
Remibrutinib (LOU064), 
Elsubrutinib, Tolebrutinib 
(SAR442168), Orela-
brutinib, Branebrutinib 
(BMS-986195), Poseltinib, 
Tirabrutinib hydrochlo-
ride (Velexbru) (GS-4059), 
Spebrutinib (CC-292), 
SHR1459, TAS5315, 
AC0058TA, and BI-BTK-1

Covalent reversible Dissociating from common thiols while main-
taining sustained inhibition of a protein with a 
conserved cysteine

Rilzabrutinib (PRN1008), BMS-986142, PRN473(SAR444727), and BIIB091

Non-covalent reversible Blocking ATP binding site of BTK, forming the 
hydrogen bonds, or decreasing surface expres-
sion of B-cell activation markers

Fenebrutinib (GDC-0853), Nemtabrutinib, and PRN473(SAR444727)
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the autoantibodies to proteins releases cytokines from 
T cells, leading to complement activation, recruitment 
of neutrophils, and release of proteolytic enzymes. Pro-
teolytic enzymes destroy the hemidesmosomes and trig-
ger the formation of subepidermal tense blisters. Most 
patients with bullous pemphigoid receive steroids, either 
prednisone or prednisolone. The dose is adjusted until 
the blisters and inflammatory lesions stop appearing, 
which usually takes several weeks. As mentioned ear-
lier, systemic steroids have many undesirable side effects. 
Rilzabrutinib (PRN1008), a covalent reversible BTKI, 
combined with low doses of corticosteroid or as mono-
therapy is safe and efficient based on the clinical response 
in patients with pemphigus vulgaris [29]. A phase II trial 
of 27 patients with PV and PF showed promising results 
for using rilzabrutinib. More than half of the patients 
achieved disease control within 4 weeks without admin-
istration of prednisolone [30]. Furthermore, rilzabrutinib 
is granted Orphan Drug Designation by the United States 
Food and Drug Administration (FDA) for the treatment 
of PV (ANZCTR No. ACTRN12614000359639) [31]. 
Frequent mild gastrointestinal side effects were observed 
in rilzabrutinib therapy [31]. A phase III trial evaluated 
the efficacy and safety of oral rilzabrutinib in moderate 
to severe PV or pemphigus foliaceus (NCT03762265). It 
was reported that the proportion of patients meeting the 
primary endpoint on rilzabrutinib was not significantly 
different from placebo (NCT03762265) [32]. Rilzabru-
tinib in combination with corticosteroid was evaluated 
in another phase III clinical trial as a promising for its 
self-limited immunomodulatory effects for the treat-
ment of newly diagnosed or relapsing PV; disease control 
was observed early and improved with continued treat-
ment, and a favorable benefit-risk profile was achieved 
(NCT02704429) [33]. Regarding human and animal 
studies, rilzabrutinib has shown promising therapeu-
tic results in humans with pemphigus, while PRN437 is 
more effective than rilzabrutinib in animal models with 
pemphigus [34]. Further case reports showed that ibruti-
nib, a covalent irreversible BTKI, could be administrated 
for the treatment of chronic lymphocytic leukemia (CLL) 
and acquired paraneoplastic pemphigus (PNP) [35, 36]. 
Tirabrutinib hydrochloride (Velexbru) (GS-4059) is a 
covalent irreversible BTKI, which reduces IgG produc-
tion and impairs IgG autoantibody-mediated signaling 
pathway involved in the pathogenesis of pemphigus, thus 
could be an alternative therapy for resistant pemphigus 
[37]. Tirabrutinib is approved in Japan for the treatment 
of plasma cell lymphoma, Waldenström macroglobu-
linemia (WM), and primary lymphoma of the central 
nervous system. To evaluate the safety and efficacy of 
tirabrutinib, sixteen patients with refractory pemphigus 
were included in a phase II trial (JapicCTI-184231) [38]. 
Treatment with tirabrutinib caused remission in patients 

with refractory pemphigus and led to reduced oral corti-
costeroid exposure [38]. In in vivo studies, oral PRN473 
that is both non-covalent and covalent reversible BTKi, is 
efficacious and well-tolerated in the treatment of canine 
pemphigus foliaceus (PF) [34, 39, 40]. Results of in vitro 
studies demonstrate that PRN473 is highly selective and 
has prolonged effect on BTK with minimal systemic 
effects [41]. The administered BTKIs in pemphigus are 
shown in Table 2.

Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is a multi-organ 
multi-factorial disease characterized by the autoreactive 
T and B cells and production of autoantibodies against 
self-antigens such as nucleic acids, DNA in both the 
double-stranded (Anti-dsDNA) and the single-stranded 
(Anti-ssDNA) conformations, RNA nuclear antigens 
such as the Ro/SAA, ribonucleoprotein, and non-nuclear 
components, and phospholipids. Indeed, autoantibod-
ies progressively accumulate in tissues years before the 
clinical onset of SLE and form antigen-antibody com-
plex deposits, causing inflammation and tissue injury 
[42, 43]. SLE flare is accompanied by an increase in 
autoantibodies (primarily anti-dsDNA) [44]. Therefore, 
B cell–targeting therapies can lead to B cell depletion, 
which is accompanied by a reduction in autoantibodies. 
Although corticosteroids and B cell–targeting therapies 
(monoclonal antibodies against CD20, CD19, and CD22) 
are essential components in SLE treatment, therapeutic 
outcomes are associated with severe side effects [45, 46]. 
Medications that inhibit more than one pathway in SLE 
pathogenesis would help to reach higher therapeutic effi-
cacy. As mentioned earlier, BTK in B cells plays a key role 
in B cell activation and its differentiation; thus, targeting 
and depleting B cells via BTKI can be a viable alterna-
tive therapeutic modality. A study in the lupus nephritic 
mouse model showed that BTK inhibition dampened 
humoral autoimmunity [47]. Study on ibrutinib in lupus-
prone B6.Sle1 or B6.Sle1.Sle3 mice revealed that humoral 
and cellular autoimmunity reduced; some autoantibod-
ies, including antinucleosome antibodies and antihistone 
antibodies, but not antidsDNA antibodies, reduced and 
led to improvement of lupus nephritis [48].

BI-BTK-1, a highly selective irreversible BTKI, is used 
to target both myeloid cell (particularly macrophage) and 
B cell activation and function in the MRL-lpr/lpr murine 
model of SLE. It is reported that lupus-associated cutane-
ous and neuropsychiatric disease decreased and cognitive 
function improved following reduced accumulation of 
macrophages, T cells, and B cells within the central ner-
vous system, particularly the choroid plexus. Finally, skin 
lesions improved macroscopically and histologically in 
the mice model [49]. In a phase II trial of SLE, the efficacy 
and safety of fenebrutinib (GDC-0853), a non-covalent 
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reversible BTKI, was assessed in 260 patients with mod-
erate to severe SLE. Although levels of phosphorylated 
BTK, CD19 + B cells, autoantibodies (mainly antidsDNA 
antibodies) decreased and the BTK pathway was inhib-
ited, fenebrutinib did not achieve a treatment benefit over 
the placebo group (NCT02908100) [50]. In another phase 
Ib/IIa trial, safety, tolerability, and preliminary efficacy of 
orelabrutinib (ICP-022) were evaluated. Orelabrutinib, 
a covalent irreversible BTKI, has shown to reduce levels 
of anti-dsDNA and IgG, total B cells, and increase C4 in 
patients with SLE. Orelabrutinib was generally safe and 
well tolerated in patients with mild to moderate SLE [51]. 
Zanubrutinib, a covalent irreversible BTKI, is in an ongo-
ing phase II study to evaluate its efficacy in patients with 
active proliferative lupus nephritis (NCT04643470). Evo-
brutinib, a covalent irreversible BTKI, was evaluated in a 
phase II study for the efficacy and safety in patients with 
active autoantibody-positive SLE. It was reported that 
evobrutinib was not an effective therapeutic interven-
tion for patients with SLE, but it was well tolerated at all 
doses, with no dose effect observed for treatment-emer-
gent adverse event (NCT02975336) [52].

A phase II trial evaluated the safety and efficacy of 
elsubrutinib, a covalent irreversible BTKI, alone or in 
combination with upadacitinib (ABT-494), a JAK1 selec-
tive inhibitor, in patients with moderately to severely 
active SLE (NCT03978520). ABBV-599HD (Elsubru-
tinib 60  mg + upadacitinib 30  mg) resulted in signifi-
cant improvements in SLE disease activity and reduced 

overall flares and time to first flares with acceptable safety 
through 48 weeks (NCT03978520) [53]. In another phase 
II trial, the safety of ABBV-599HD is being evaluated for 
adult patients with moderately to severely active SLE to 
assess change in disease state (NCT04451772).

Branebrutinib (BMS-986195), a covalent irrevers-
ible BTKI, was evaluated in a phase II trial for its safety 
and effectiveness in patients with active SLE; however, 
the data have not been published (NCT04186871). 
AC0058TA, a covalent irreversible BTKI, was evalu-
ated for the safety, tolerability, pharmacokinetics, and 
pharmacodynamics in adult SLE patients with posi-
tive ANA levels in a phase Ib trial; however, no study 
results were posted or published about the clinical trial 
(NCT03878303). The administered BTKIs in SLE are 
shown in Table 3.

Sjögren’s syndrome
Sjögren’s syndrome (SS) is a chronic inflammatory dis-
ease manifesting with dryness of the eyes (xerophthal-
mia), mouth (xerostomia), skin, mucosal surfaces, and 
extra-glandular involvement including arthritis, renal 
complications, vasculitis (mainly cryoglobulinemic 
vasculitis), and extranodal lymphoproliferation (caus-
ing lymphocytic interstitial pneumonitis) [54, 55]. The 
extraglandular manifestations of Sjögren’s syndrome 
are mainly associated with increase in auto-reactive 
B-cell stimulation, B-cell hyperactivity, increased levels 
of circulating immunoglobulins (autoantibodies), and 

Table 2  BTK inhibitors tested in preclinical and clinical trials in autoimmune blistering disorders
Disease BTK inhibitor Mechanism of action Significant trial/study Significant findings of clinical trial/study
Pemphigus 
vulgaris

Rilzabrutinib 
(PRN1008)

Second-generation cova-
lent reversible, high affinity 
and selectivity for the BTK, 
anti-inflammatory effects

Phase II
(in new-onset or relapsing, 
moderate‐to‐severe PV /
healthy adult participants)

Safe and efficacious with rapid clinical 
activity and mild gastrointestinal system side 
effects in PV (NCT02704429 / ANZCTR No. 
ACTRN12614000359639) [30, 31]

Phase III
(in newly diagnosed or relaps-
ing PV)

Early disease control and disease improvement 
with continued treatment, a favorable benefit-
risk profile (NCT02704429) [32]

Phase III
(in moderate to severe PV or 
pemphigus foliaceus)

The proportion of patients meeting the primary 
endpoint on rilzabrutinib was not significantly 
different from placebo (NCT03762265) [33]

Tirabrutinib Second-generation cova-
lent irreversible

Phase II
(in refractory pemphigus)

The complete remission rate after 24-week 
treatment: 18.8%
The cumulative complete remission rate after 
52-week treatment: 50.0%
(JapicCTI-184231) [38]

Ibrutinib
(PCI-32765)

First-generation covalent 
irreversible, off-target 
activity on EGFR, ErbB2, 
ITK, and TEC

Case-report (acquired paraneo-
plastic pemphigus)

A case report of PNP in the context of CLL, 
treated with ibrutinib [35]

Case-report (acquired paraneo-
plastic pemphigus)

A case report of PNP in the context of B-CLL/
SLL, treated with ibrutinib and rituximab [36]

Bullous 
pemphigoid

PRN473 Second-generation, both 
non-covalent and covalent 
reversible, anti-inflamma-
tory effects in vitro and in 
vivo, very limited off-target 
effects

In vivo and in vitro study Efficacious and well-tolerated in the treatment 
of canine pemphigus foliaceus (PF) [34, 39–41]
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alterations in B-cell subpopulations [56]. B cell–targeting 
therapies such as monoclonal antibodies against CD20 
(such as rituximab) did not reach remarkable results in 
patients with Sjögren’s syndrome in two clinical trials 
[57, 58]. Remibrutinib (LOU064), a covalent irreversible 
BTKI, provides an alternative therapy for diseases driven 
by B cells, mast cells, and basophils such as Sjögren’s 
syndrome and has been assessed for its safety and toler-
ability in a phase I trial [59]. To assess basophil suppres-
sion by remibrutinib, CD203c inhibition was applied 
twice daily showing positive outcomes [60]. Remibru-
tinib (LOU064) has fewer side effects, higher specificity 
and potency of blocking activity than its ancestor mol-
ecules [61]. Remibrutinib is well-tolerated at all doses 
without any dose-limiting toxicity and demonstrates 
a safe profile and strong BTK inhibition in blood and 
skin pharmacodynamics in healthy human subjects and 
in healthy subjects with asymptomatic atopic diathesis 
[59]. Remibrutinib was evaluated in a phase II trial for 
its efficacy in patients with Sjögren’s syndrome, the trial 
has been terminated, but the data have not been pub-
lished yet (NCT04035668). Tirabrutinib has been evalu-
ated for its efficacy and safety in patients with moderate 
to severe active Sjögren’s syndrome, either primary or 
associated with a concomitant systemic autoimmune 
disease, through a phase II study (NCT03100942) [62]. 
Tirabrutinib demonstrated no significant differences 
versus placebo in primary and secondary endpoints 
[62]. Branebrutinib (BMS-986195) is well-tolerated and 
safe enough to be administrated in healthy humans in a 
phase I study [63]. Branebrutinib is rapidly absorbed with 
100% occupancy of BTK after a single dose and inacti-
vates BTK rapidly (NCT02705989) [63]. Branebrutinib 
was evaluated in a phase II trial to assess its safety and 
effectiveness in patients with primary active Sjögren’s 
syndrome; however, the data have not been published yet 
(NCT04186871). The administered BTKIs in Sjögren’s 
syndrome are shown in Table 4.

Rheumatoid arthritis
Rheumatoid Arthritis (RA) is an autoimmune and 
inflammatory disease, in which the immune system 
attacks healthy cells causing inflammation (painful swell-
ing) in the affected tissues [64]. In detail, RA involves 
dysregulated T and B lymphocyte proliferation, particu-
larly B cells, via BCR signaling leading to the produc-
tion of autoantibodies and inflammatory cytokines [65]. 
As mentioned earlier, BTK is expressed in myeloid cells, 
including neutrophils, mast cells, monocytes, and macro-
phages infiltrating into synovium in RA [66, 67]. Immune 
complexes containing IgG are present in the joints, 
affecting synovial macrophages to produce cytokines 
and matrix metalloproteinases (MMPs) that contribute 
to RA pathophysiology [65]. In addition, BTK mediates Ta
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bone resorption by stimulating osteoclast proliferation 
and differentiation as a contributor to RA [65, 68]. Due 
to the significant role of BTK in the pathogenic path-
ways of RA, BTKIs could be promising options. Ibrutinib 
demonstrated good efficacy with antiarthritic activity in 
arthritic DBA/1 mice models [69]. By longitudinal inte-
grative whole-exome, whole-transcriptome sequenc-
ing and targeted sequencing, it has been reported that 
the Long-term need for ibrutinib to treat chronic RA 
leads to development of acquired resistance in patients, 
particularly developing a C481S mutation, which pro-
motes BTK activation [70]. Thus, ibrutinib can cause a 
potential problem for all BTKIs, reversible or irrevers-
ible, which target Cys-481 in patients with mantle cell 
lymphoma with acquired resistance to ibrutinib [70]. 
Spebrutinib (CC-292), a covalent irreversible BTKI, has 
demonstrated sustained BTK occupancy, with low, even 
undetectable plasma levels of the drug in healthy humans 
in a preliminary phase I trial, and occupied all circulat-
ing BTK protein [11]. However, spebrutinib did not 
achieve significant clinical efficacy in a phase IIa trial in 
active RA patients on background methotrexate therapy 
(NCT01975610) [71]. Despite the lack of clinical efficacy 
in the trial, patients treated with spebrutinib showed a 
statistical reduction in chemokines CXCL13 and MIP-1β 
(implicated in B cell trafficking) and serum CTX-I (a 
measure of osteoclastic activity) compared to placebo 
[71]. Acalabrutinib (ACP-196), second-generation cova-
lent irreversible BTKI, was also assessed in a phase IIa 
trial in 31 active RA patients on background metho-
trexate but did not show a meaningful clinical response 
after 4 weeks of treatment (NCT02387762). Fenebruti-
nib (GDC-0853) has demonstrated proper efficacy in a 
phase II trial in older/unfit patients and those with high-
risk and/or relapsed CLL [25]. The primary outcome of 
higher doses of fenebrutinib (150–200  mg twice daily) 
was more than 50% clinical improvement (ACR50) com-
pared to placebo, at 12 weeks of treatment according 
to the American College of Rheumatology criteria [25]. 
Poseltinib (LY3337641/HM71224), a novel BTKI acting 
on B cell activation and osteoclast formation, is evaluated 
through in vitro studies. Poseltinib blocks phosphoryla-
tion of BTK, ERK, and PLCγ2 resulting in suppression of 
osteoclast formation and inhibition of the upregulation 
of activation markers such as CD40, CD86, and CD69 
on stimulated B cells [72]. To evaluate the efficacy and 
safety of poseltinib, a phase II trial was designed which 
was terminated after interim data did not demonstrate 
significant efficacy with no difference between doses of 
poseltinib and placebo at week 12 in moderate-to-severe 
RA patients (NCT02628028) [73]. BMS-986142, a cova-
lent reversible BTKI, was evaluated for safety and efficacy 
in patients with moderate to severe RA with an inad-
equate response to methotrexate alone or methotrexate 

with up to 2 TNF Inhibitors, but the data have not been 
published (NCT02638948). Evobrutinib, a covalent irre-
versible BTKI, was assessed to determine efficacy, dose-
response, and safety in active moderate to severe RA with 
previous methotrexate treatment, and it was well toler-
ated across indications at all doses (NCT03233230) [74]. 
Tirabrutinib (GS-4059) is evaluated for its safety profile, 
tolerability, and effect on disease-specific clinical mark-
ers and outcomes in patients with RA in a phase I trial 
[75]. Patients who received tirabrutinib 20  mg daily for 
four weeks achieved ACR20 in 38% of patient group 
compared to 20% for the placebo group, up to one month 
after treatment [75]. The safety and efficacy of elsubru-
tinib were evaluated on a background of upadacitinib, 
conventional synthetic disease-modifying anti-rheumatic 
drugs (csDMARDs), in a phase II trial to define the opti-
mal dose for further development in patients with rheu-
matoid arthritis and inadequate response or intolerance 
to biological disease-modifying antirheumatic drugs; and 
it was reported that significant improvements in disease 
activity metrics of RA was achieved (NCT03682705) [76]. 
Branebrutinib (BMS-986195) was investigated in a phase 
I trial to evaluate the effects in healthy male subjects 
and in patients with moderate to severe RA; however, 
the trial was terminated without reporting the results 
(NCT03245515). Another phase I trial was conducted 
to evaluate the effects in healthy male subjects and in 
patients with moderate to severe RA and the trial has 
been completed, but the data have not been published 
(NCT02638948). Another phase I trial was conducted 
to assess the effect of branebrutinib on the pharmacoki-
netics of methotrexate, caffeine, montelukast, flurbipro-
fen, omeprazole, midazolam, digoxin, and pravastatin; 
the trial has been completed, but the data have not been 
published (NCT03131973). TAS5315, an irreversible 
covalent BTKI, was evaluated in a phase II trial to assess 
the efficacy and safety of TAS5315 in combination with 
methotrexate in 12 weeks or 36 weeks in patients with 
moderate to severe RA with inadequate response to max-
imally tolerated methotrexate dose, and it was reported 
that some bleeding risks occured, and nevertheless dem-
onstrated numerical differences, compared with placebo, 
in the improvement rates of all measures of RA disease 
activity (NCT03605251) [77]. The administered BTKIs in 
RA are shown in Table 5.

Systemic sclerosis
Systemic sclerosis (SSc) is an autoimmune disorder, in 
which the immune system attacks the connective tissue 
of the skin, internal organs, and blood vessels resulting 
in fibrosis formation [78]. Pulmonary and cardiac fibro-
sis and particularly pulmonary hypertension are severe 
fatal complications [79, 80]. Accumulating evidence sug-
gests that impaired function of regulatory and effector 
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B cells leads to immune dysregulation, hyperreactiv-
ity, and chronic activation of effector B cells, which in 
turn, increases the production of autoantibodies, vas-
culopathy, and chronic activation of fibroblasts [81, 82]. 
Moreover, B cell-derived profibrotic IL-6 and TNF-α in 
response to TLR9 stimulation contribute to the patho-
genesis of SSc [83]. Tocilizumab (Actemra), an IL-6-
receptor-α inhibitor, failed to reduce skin thickening but 
caused modification of Rodnan Skin Score and improved 
pulmonary function in a phase III study [84]. Immuno-
modulators addressing B cells such as rituximab and 
tocilizumab in patients with SSc showed mixed efficacy 
with complete B cell depletion in a case-control study 
[84, 85]. Ibrutinib was assessed in 24 patients with SSc 
and showed suppressed production of the profibrotic 
cytokines IL-6 and TNF-α of effector B cells and also less 
activated phosphorylated NF-κB in an in vitro model of 
SSc sample [81]. In addition, autologous stem cell trans-
plantation is an available treatment but only for selec-
tive patients with severe disease and high risk of major 
organ failure. The administered BTKIs in SS are shown 
in Table 6.

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune disease, in 
which the immune system attacks the myelin sheath 
of neurons, resulting in slowed and disrupted nerves’ 
conduction. In the cerebrospinal fluid of MS patients, a 
significant increase in the expression of B cell co-stim-
ulatory molecules such as CD80 and CD86 is observed 
[21]. B cells stimulate T cells in response to myelin 
basic protein to secrete pro-inflammatory cytokines 
such as IFN-γ and TNF-α [20, 21]. BTK is expressed 
in microglia (myeloid cells) and B cells of the central 
nervous system. As mentioned earlier, BTKI reduces 
B cells’ mitochondrial respiration; thus treatment 
with BTKI can be considered as therapeutic agents in 
patients with MS [20]. Tolebrutinib (SAR442168) that 
crosses the blood-brain barrier is a covalent irrevers-
ible BTKI, which was assessed in a phase IIb trial for 
its efficacy and safety in relapsing-remitting MS or 
relapsing secondary progressive MS [86]. Reduction 
in the number of gadolinium-enhancing lesions was 
reported after 12 weeks of treatment (NCT03889639) 
[86]. In another phase II trial, tolebrutinib at a 60  mg 
daily dose for 48 weeks (nearly one year) was evaluated 
to see if it could help clear chronically inflamed brain’s 
white matter lesions in MS (NCT04742400) [87]. None 
of the paramagnetic rim lesions (PRLs) had disap-
peared despite nearly a year of treatment, suggesting 
that tolebrutinib had no effect on smoldering inflam-
mation [87]. Since the patients needed to transition to 
the higher dose of 120 mg daily for the next 48 weeks 
and the higher dose of tolebrutinib might lead to liver D
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damage, the study had been hold [87]. In a phase III tri-
als, tolebrutinib is currently being evaluated in delaying 
disability progression in nonrelapsing in primary pro-
gressive MS (PPMS) to determine the efficacy, safety, 
tolerability, pharmacokinetics, pharmacodynamics, and 
the efficacy on clinical endpoints, magnetic resonance 
imaging (MRI) lesions, cognitive performance, physical 
function, and patient’s quality of life (NCT04458051). 
Moreover, in another phase III trials, tolebrutinib was 
evaluated in delaying disability progression in non-
relapsing in secondary progressive MS (NRSPMS) 
(NCT04411641). However, the trial was placed on hold 
because of reported cases of drug-induced liver injury 
in patients, potentially caused by a preexisting fac-
tors related to hepatic dysfunction (NCT04411641). 
In another phase III trial in patients with relapsing 
MS, efficacy, safety, tolerability, and pharmacodynam-
ics of daily tolebrutinib is being assessed compared 
to teriflunomide (Aubagio) on disability progression, 
MRI lesions, cognitive performance, and quality of life 
(NCT04410991). Evobrutinib that affects B cell activa-
tion both in vitro and in vivo, was assessed in a phase 
II trial in patients with relapsing MS. Patients who 
received 75  mg of evobrutinib once daily had fewer 
lesions than those receiving placebo after 12 weeks of 
treatment. However, patients who received 25 mg once 
daily or 75 mg twice daily did not show any significant 
difference versus placebo. Longer and larger trials are 
necessary to assess the efficacy of evobrutinib [88]. A 
phase III trial evaluated the efficacy and safety of evo-
brutinib administered orally twice daily versus teriflu-
nomide (Aubagio) administered orally once daily in 
patients with relapsing MS (NCT04338022). However, 
results of the trial revealed that evobrutinib did not 
lead to a more superior reduction in annualized relapse 
rates than teriflunomide (NCT04338022). Orelabruti-
nib in a phase II trial was evaluated to detect the num-
ber of new brain lesions with active inflammation after 
12 weeks and also its efficacy, safety, and relapse rates 
after 120 weeks (NCT04711148) and led to significant 
reductions in new active brain lesions among patients 
with relapsing-remitting MS (RRMS) (NCT04711148). 
BIIB091, a novel selective covalent reversible small-
molecule BTKI, has been evaluated in vivo and in a 
phase I trial so far. In in vivo studies, BIIB091 inhibited 
B cell activation and autoantibodies production [89]. In 
a phase I trial, BIIB091 inhibited naïve and memory B 
cell activation with a minor impact on myeloid or lym-
phoid cell survival after 14 days of dosing in healthy 
volunteers [89]. Fenebrutinib is currently in an ongoing 
phase III clinical trial for evaluation of its efficacy and 
safety on disability progression and relapse rate in adult 
participants with PRMS (NCT04586023). The adminis-
tered BTKIs in MS are shown in Table 6.

Myasthenia gravis
Myasthenia gravis (MG) is a chronic autoimmune neu-
romuscular disease that causes weakness in the skel-
etal muscles such as arms, legs, and breathing muscles 
worsening after periods of activity and improving after 
periods of rest. In MG, antibodies against acetylcholine 
receptors (AChR), muscle-specific kinase (MuSK), and 
lipoprotein receptor related protein 4 (LRP4) block and 
destroy the receptors at the neuromuscular junction [90, 
91]. Circulating antibodies against AChR are detected 
in blood samples of most MG patients [92]. Interaction 
between activated T and B cells leads to the production 
of IgG-type antibodies [93]. BTKI may be a promising 
therapeutic option for the treatment of MG; however, 
there has been only one clinical trial to assess the effect 
of BTKIs on MG patients. Tolebrutinib was assessed in 
phase III trial to evaluate its efficacy and safety in adult 
patients with moderate-to-severe generalized MG 
(NCT05132569). The trial was terminated due to the 
drug-induced liver injury in patients, potentially caused 
by a preexisting factors related to hepatic dysfunction 
(NCT05132569). The administered BTKIs in MG are 
shown in Table 6.

BTKI in inflammatory diseases
Psoriasis
Psoriasis is characterized by raised plaques and scales 
on the skin caused by dysfunction of the immune sys-
tem [94]. Indeed, an overactive immune system speeds 
up skin cell growth, thus skin epithelial keratinocytes 
pile up forming pink or red patches, and white or silvery 
scales [95]. Oxidative stress is known as an important 
contributor to the pathogenesis of psoriasis. Neutrophils 
secrete oxidants through the BTK pathway that main-
tains inflammation in psoriasis [96, 97]. In addition, BTK 
executes signaling functions in dendritic cells and γδ + T 
cells. In detail, activation of the BTK pathway upregulates 
inflammatory cytokines such as IL-23/TNF-α in dermal 
CD11c dendritic cells and IL-17  A in γδ + T cells. Ibru-
tinib was evaluated in dermal psoriasis-like inflamma-
tion of the imiquimod-induced (IMQ) mouse model [98]. 
Preventive treatment with ibrutinib in the IMQ mouse 
model led to the reduction in IL-23/TNF-α levels of 
CD11c dendritic cells and IL-17 A levels of γδ + T cells; 
thus, ibrutinib reduces oxidative stress in these innate 
immune cells, which makes a promising therapeutic 
option for psoriasis [37]. The administered BTKIs in pso-
riasis are shown in Table 7.

Chronic spontaneous urticaria
Chronic spontaneous urticaria (CSU), also known as 
chronic idiopathic urticaria, is the presence of urticaria 
(hives) on most days of the week, for a duration of six 
weeks or longer. Mechanistically, CSU happens because 
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of infiltration of mainly T helper 2 cells (Th2) around 
small venules of the skin [99]. BTK is required in the 
activation of mast cells via FcεRI and producing autoan-
tibodies by B cells. Thus, BTKI might be effective in CSU. 
Fenebrutinib (GDC-0853) was assessed in a phase II trial 
in adult patients with CSU for more than six months and 
symptomatic despite treatment with H1 antihistamines 
(up to fourfold the approved dose); IgG-anti-FcεRI auto-
antibodies significantly decreased at week 8 at all dose 
levels compared to placebo, which demonstrated good 
efficacy in patients with CSU, but the long-term exten-
sion of the trial was also terminated due to the transient 
transaminase elevations in a limited number of patients 
and safety issues (NCT03137069) [100]. Notably, fene-
brutinib did not result in remarkable reductions in IgG 
subtypes such as IgG1 and IgG3 [101]. Remibrutinib 
(LOU064) provides an alternative therapy for diseases 
driven by B cells, mast cells, and basophils such as CSU. 
Remibrutinib was evaluated for its clinical safety and 
pharmacodynamics in CSU with asymptomatic atopic 
diathesis in a phase I clinical trial (NCT03918980) [59]. 
Remibrutinib was well-tolerated at all doses without any 
dose‐limiting toxicity with a favorable safety profile and 
near complete basophil or skin prick test (SPT) inhibi-
tion was achieved at greater than or equal to 50 mg q.d. 
for CD63 and at greater than or equal to 100 mg q.d [59]. 
An ongoing phase III trial is designed to evaluate the effi-
cacy and safety of remibrutinib in the treatment of CSU 
in adults which was inadequately controlled by H1 anti-
histamines (NCT05030311). Rilzabrutinib (SAR444671) 
is currently being assessed in an ongoing phase II trial 
for the safety and effectiveness of 3 oral doses, com-
pared with placebo for decreasing the frequency and 
severity of pruritus and urticaria in patients with CSU 
(NCT05107115). The administered BTKIs in CSU are 
shown in Table 7.

Atopic dermatitis
Atopic dermatitis (AD), the most common form of 
eczema, is a chronic inflammatory disorder causing dry, 
itchy, inflamed, and cracked skin [102]. AD is usually a 
chronic condition and common in young children but also 
occurs at any age [103, 104]. PRN437 (SAR444727), both 
non-covalent and covalent reversible topically adminis-
tered BTKI, inhibits three pathways including the activa-
tion of monocyte and neutrophil migration mediated by 
IgG (FcgR), the activation of mast cell and basophil medi-
ated by IgE (FceR), and the activation of the β2-integrin c-1 
and subsequently neutrophil recruitment into inflamed tis-
sue [105, 106]. PRN473 (SAR444727) was evaluated for the 
safety, tolerability, and efficacy in phase IIa in 40 patients 
with mild to moderate AD; the trial has been completed, 
but the data have not been published (NCT04992546). 
It is reported in a study that ibrutinib (PCI-32765) 

therapy suppresses IgE-mediated basophil activation 
and reduces mast cell and basophil reactivity to the aller-
gens in adults suffering from allergy to peanut or tree nut 
(NCT03149315) [107]; therefore, ibrutinib eliminates 
aeroallergen skin test [107, 108]. Branebrutinib (BMS-
986166) was evaluated in phase II trial to evaluate the effi-
cacy, safety, and tolerability for the treatment of patients 
with moderate to severe AD; the trial has been completed, 
but the data have not been published (NCT05014438). The 
administered BTKIs in AD are shown in Table 7.

Asthma
Asthma is associated with chronic inflammation, airway 
hyper-responsiveness, and reversible airflow obstruction. 
Accumulation of inflammatory mediators, cytokines, 
chemokines, infiltrating immune cells in airways lead-
ing to remodeling of the airways, including subepithelial 
fibrosis, myofibroblast hyperplasia, goblet cell hyperpla-
sia, wall thickening, smooth muscle cell hyperplasia and 
hypertrophy, epithelial hypertrophy, and airway wall 
thickening [109–111]. B cells produce antibodies such 
as IgE [112]. IgE binds to its receptor (FcqRII or CD23) 
and induces CD23-mediated eosinophilic infiltration 
causing airway hyper-responsiveness of asthma [113]. 
Stimulation of tyrosine kinases such as SYK, ZAP-70, 
BTK, and ITK on B cells is the earliest signaling response 
in inflammatory cells; thus, BTKI can be a therapeutic 
option for asthma. Rilzabrutinib is being assessed in an 
ongoing phase II trial to evaluate its efficacy, safety, and 
tolerability in patients with moderate-to-severe asthma 
(NCT05104892). As mentioned earlier, BTK deficiency is 
characterized by decreased B cell level and serum immu-
noglobulin level. It is expected that patients with BTK 
deficiency be protected from atopy such as allergic rhini-
tis, asthma, and atopic dermatitis (eczema). Surprisingly, 
in a case report, a 7-year-old boy with agammaglobulin-
emia presented with allergic rhinitis, severe papular urti-
caria, asthma symptoms, and a positive skin prick test 
to aeroallergens and food allergens. He had a mutation 
in the BTK gene revealed by genetic analysis [114]. The 
administered BTKIs in asthma are shown in Table 7.

BTKIs adverse events
Both on-target and variable off-target activities of 
BTKI on the cellular process are suggested to be linked 
with adverse events (AEs), since some AEs cannot be 
explained by BTK inhibition alone [115]. Clinically, AEs 
develop during long-time therapy with BTKIs because 
of unlimited inhibition of BTK, and consequently lead to 
significant rates of dosage reduction or treatment cessa-
tion. So, toxicity and AEs profile of BTKIs are related to 
their pattern of kinase binding [116]. The most observed 
AEs of BTKIs include bleeding, rash, diarrhea, and atrial 
fibrillation (AF).
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Bleeding is assumed to be related to the effect of BTKI 
on BTK and TEC family proteins and their role in col-
lagen-induced platelet aggregation, GPIb-IX, and inte-
grin αIIbβ3 [117–119]. Rash and diarrhea are epidermal 
growth factor receptor (EGFR)-related AEs in BTKI-
treated patients. AF is attributed to the BTKIs effect on 
C-terminal Src kinase (CSK) [120]. Another suggested 
mechanism of BTKIs-related AF is the inhibition of 
PI3K signaling which is responsible for cardiac protec-
tion under stress and is regulated by BTK and TEC family 
proteins [121]. Clinicians are advised to monitor cardiac 
symptoms, such as light-headedness, syncope, and palpi-
tations, in patients on all BTKIs [116]. All BTKi AEs are 
shown in Table 8.

Ibrutinib
While evaluating the efficacy and safety of ibrutinib in 
phase III RESONATE (PCYC-1112) in patients with 
relapsed/refractory (R/R) CLL with a median age of 67 
years, the most common AEs were diarrhea, fatigue, 
nausea, pyrexia, anemia, neutropenia, thrombocyto-
penia, pneumonia, and AF. A subdural hematoma was 
reported in 1 patient in this trial [122]. In phase III stud-
ies RESONATE-2 (PCYC-1115-CA) and ILLUMINATE 
in patients with CLL/SLL and with a median age of 73 
years, the most common AEs were cough, hyperten-
sion, and AF, in addition to the AEs mentioned earlier 
[123, 124]. In a case report, a 68-year-old man with CLL 
received ibrutinib. His initial response was lymphocy-
tosis. After 6 months, he reported migratory arthralgias 
and fatigue [116]. Myalgia and arthralgia, mostly migra-
tory arthralgias, are observed in a retrospective analysis 
of CLL patients treated with ibrutinib [125]. With lon-
ger-term follow-up, some cases are reported with ven-
tricular arrhythmias and cardiac death, as ibrutinib is 
associated with reduced QT duration [126, 127]. Another 
AE is minor bleeding (low-grade ecchymoses and pete-
chiae) emerging in up to two-thirds of patients associated 
with impaired platelet function and decreased platelet 
count rather than thrombocytopenia [128]. Major bleed-
ing is reported less frequently in 2–9% of patients [122, 
123, 129]. Bleeding among ibrutinib-treated patients can 
occur in the presence or absence of thrombocytopenia 
[130–135]. Some opportunistic infections, especially 
invasive fungal infections, such as Pneumocystis jirove-
cii and Aspergillus fumigatus have emerged in patients 
with CLL on BTKIs, particularly on ibrutinib [136–139]. 
Aspergillus fumigatus induces BTK phosphorylation in 
macrophages, and impairs nuclear factor of activated 
T-cells (NFAT) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) responses [140], 
ITK kinase [141], and M1 polarization in macrophages 
[142]. These mechanisms increase the susceptibility of 
ibrutinib-treated patients to fungal infections. There are 

a few reports of Pneumocystis jirovecii in XLA patients, 
as the ibrutinib-sensitive TEC kinase is a substitute for 
BTK in non-B-cells [143]. Thus, both inhibition of BTK 
and TEC may predispose XLA patients to fungal infec-
tion. Ibrutinib inhibits the platelet adhesion to lymphatic 
endothelial cells through phospho-SRC/spleen tyrosine 
kinase (SYK) and C-type lectin-like receptor 2 (CLEC-
2) that is another proposed mechanism for increased 
rates of invasive fungal infections [144]. In phase Ib/II 
PCYC-1102 and extension study PCYC-1103 with up to 8 
years of follow-up, the most sustained AE was hyperten-
sion in 28% of patients [145]. The proposed mechanism 
is the inhibition and downregulation of PI3K-p110α and 
nitrous oxide production [121, 146]. From 2009 to 2016, 
hypertension rates were studied in 562 patients treated 
with ibrutinib for malignancies, amongst which 440 
(78.3%) patients developed new or worsened high blood 
pressure over a median follow-up of 30 months. The 
effect of new-onset or worsened hypertension on major 
cardiovascular events was assessed; hypertension was 
accompanied by arrhythmia, myocardial infarction, heart 
failure, stroke, and cardiovascular death [146]. Non-pal-
pable asymptomatic petechial rash (which is associated 
with ibrutinib-induced platelet dysfunction), pruritic 
palpable rash (which is associated with EGFR inhibition 
and infiltration of the inflammatory cells) [147, 148], ery-
thema nodosum, brittle fingernails or toenails, and for-
mation of vertical nail ridges are observed in two-thirds 
of patients on ibrutinib [149]. Conversely, another mech-
anism underlying rash is the ibrutinib-induced increase 
of EGFR expression in dermal fibroblasts in the HDF-
3CGF system [150–152]. Unfortunately, 60% of patients 
on ibrutinib in the long-term had acquired resistance to 
covalent inhibitors, caused by cysteine C481 to serine 
substitution in BTK [153–155]. Two possible explana-
tion for BTKI’s contribution to the occurrence of AF is 
discussed earlier; another possible explanation for ibruti-
nib-induced AF is the simultaneous binding to HER2 and 
HER4, whereas acalabrutinib inhibits HER4 and TEC, 
but not HER2; zanubrutinib inhibits TEC and HER4, but 
not HER2; tirabrutinib inhibits TEC but neither HER4 
nor HER2. Ibrutinib’s simultaneous targeting of HER2 
and HER4 is suggested to be responsible for AF [156].

Acalabrutinib
Efficacy and safety of acalabrutinib was evaluated in 
the phase III study ELEVATE-TN in patients with CLL 
with a median age of 70 years. The most common AEs 
included headache, diarrhea, fatigue, cough, upper respi-
ratory tract infection, arthralgia, bleeding events such as 
contusion and petechiae, neutropenia, anemia, thrombo-
cytopenia, urinary tract infection, pneumonia, dyspnea, 
back pain, AF, acute myocardial infarction, brain injury, 
and cardiac failure [157]. Headache is uniquely observed 
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with acalabrutinib; nearly 70% of patients experienced 
headaches during weeks 1 to 3 of treatment [158]. In 
phase III ASCEND in patients with relapsed or refrac-
tory CLL with a median age of 67 years, increased levels 
of alanine aminotransferase, hepatotoxicity, and major 
bleeding were also reported in addition to the earlier 
mentioned AEs [159]. The same AEs in addition to sepsis 

were reported in the phase II ACE-CL-001 [158, 160]. In 
clinical studies, rates of discontinuation due to AEs are 
lower with acalabrutinib rather than ibrutinib (9–11% at 
28.3-month follow-up) [157]. In in vitro study of human 
platelets, acalabrutinib does not inhibit TEC, suggesting 
a reduced number of bleeding cases [161, 162]. Acalabru-
tinib has a lower rate of AF in comparison with ibrutinib 

Table 8  Adverse events of BTK inhibitors
BTK inhibitor Significant 

trial/study
Immune-mediated 
disease

Adverse event

Ibrutinib Phase III Patients with 
relapsed/refractory 
(R/R) CLL

Diarrhea, Fatigue, Nausea, Pyrexia, Anemia, Neutropenia, Thrombocytopenia, Pneumo-
nia, AF, A Subdural Hematoma in 1 patient [122]

Phase III Patients with CLL/SLL Cough, Hypertension, Diarrhea, Fatigue, Nausea, Pyrexia, Anemia, Neutropenia, Throm-
bocytopenia, Pneumonia, AF [123, 124]

Case reports Patient with CLL Lymphocytosis (an early AE), Migratory Arthralgias and Fatigue (a late AE), Myalgia 
arthralgia, Migratory Arthralgias, Ventricular Arrhythmias, Reduced QT Duration, Cardiac 
Death [116, 125–127]

Phase III Patient with CLL Minor Bleeding (Low-Grade Ecchymoses And Petechiae) with Impaired Platelet Func-
tion and Decreased Platelet Count rather than Thrombocytopenia, Major Bleeding 
(Less Frequently), Bleeding In The Presence or Absence Of Thrombocytopenia, Invasive 
Fungal Infections, such As Pneumocystis Jirovecii (also in XLA patients) and Aspergillus 
Fumigatus [122, 123, 128–139, 143]

Phase Ib/II First-Line and Re-
lapsed/Refractory CLL

Hypertension [145]

Phase III Patients with Lym-
phoid malignancy 
including CLL, MCL, 
WM

New-Onset or Worsened High Blood Pressure accompanied by Arrhythmia, Myocardial 
Infarction, Heart Failure, Stroke, and Cardiovascular Death [146]

Case reports Patients with CLL Non-Palpable Asymptomatic Petechial Rash, Pruritic Palpable Rash, Erythema Nodosum, 
Brittle Fingernails or Toenails, And Formation of Vertical Nail Ridges [147–149]

Acalabrutinib Phase III Patients with CLL Headache, Diarrhea, Fatigue, Cough, Upper Respiratory Tract Infection, Arthralgia, Bleed-
ing Events Such As Contusion And Petechiae, Neutropenia, Anemia, Thrombocytopenia, 
Urinary Tract Infection, Pneumonia, Dyspnea, Back Pain, AF, Acute Myocardial Infarction, 
Brain Injury, And Cardiac Failure [157]

Phase III Patients with relapsed 
or refractory CLL

Increased Levels Of Alanine Aminotransferase, Hepatotoxicity, And Major Bleeding [159]

Phase II Patients with re-
lapsed/refractory CLL 
and treatment-naive 
CLL

Increased Levels Of Alanine Aminotransferase, Hepatotoxicity, And Major Bleeding, 
Sepsis [158, 160]

Zanubrutinib Phase II Patients with R/R CLL/
SLL

Neutropenia, Thrombocytopenia, Lung Infection/Pneumonia, Upper Respiratory Infec-
tion, And Anemia [165]

Phase III Patients with del(17p) 
CLL/SLL

Contusion, Diarrhea, Nausea, Constipation, Rash, Back Pain, Cough, Arthralgia, Fatigue, 
Minor and Major Bleeding, Bruising, Dermatological Malignancies, Non-Skin Second Ma-
lignancies, AF, Sepsis Secondary To Pseudomonas, Melanoma, Acute Renal Failure, And
*4 of the patients died in this trial:
2 due to disease progression,
1 due to an adverse event after disease progression (acute kidney injury),
1 after disease progression due to septic shock [166]

Phase III com-
paring zanu-
brutinib versus 
ibrutinib

Patients with WM Both AF and hypertension in lower rates for zanubrutinib than ibrutinib,
Diarrhea in lower rates for zanubrutinib than ibrutinib [166, 168]

Tirabrutinib Phase II Naïve patients or pa-
tients with relapsed/
refractory WM

Rash, Neutropenia, Lymphopenia, Leukopenia, Diarrhea [127, 169–171]

Fenebrutinib Phase II Patients with active 
rheumatoid arthritis

Upper Respiratory Tract Infections, Nausea, Headache, And Anemia [172]
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[158]. As mentioned earlier, diarrhea is the most com-
mon AE in patients on BTKIs, which occurs before 
month 6 of treatment [122, 157, 163], and the rates of 
diarrhea reported in patients on acalabrutinib are similar 
to those on ibrutinib [158, 164].

Zanubrutinib
In a phase II study, zanubrutinib was evaluated in Chi-
nese patients with R/R CLL/SLL with a median age 
of 61 years; the most common AEs were neutropenia, 
thrombocytopenia, lung infection/pneumonia, upper 
respiratory infection, and anemia [165]. In the phase III 
SEQUOIA trial on patients with del(17p) CLL/SLL with a 
median age of 70 years, the most common AEs were con-
tusion, diarrhea, nausea, constipation, rash, back pain, 
cough, arthralgia, fatigue, minor bleeding, bruising, der-
matological malignancies, non-skin second malignancies, 
AF, sepsis secondary to pseudomonas, melanoma, and 
acute renal failure, and 4 of the patients died in this trial; 
two due to disease progression, one due to an adverse 
event after disease progression (acute kidney injury), and 
one after disease progression due to septic shock [166]. 
In another study, 0.3–2.2% of major bleedings were seen 
in zanubrutinib-treated patients [167]. Based on the 
results from clinical trials, fewer AF cases were reported 
in patients on zanubrutinib or acalabrutinib (mentioned 
earlier) than ibrutinib. Moreover, in the phase III trial 
ASPEN study, zanubrutinib versus ibrutinib in patients 
with WM was compared. Both AF and hypertension 
were reported in lower rates for zanubrutinib than ibruti-
nib with a median follow-up of 19.4 months [168]. Thus, 
treatment with zanubrutinib or acalabrutinib leads to 
fewer AF cases [156]. Among ibrutinib-treated patients, 
the frequency of diarrhea is reported in 32% of patients, 
while it is reported in 21% of patients treated with zanu-
brutinib, which is associated with a less potent inhibition 
of EGFR [166].

Tirabrutinib
In a low-patient-enrolled phase II study in treatment-
naïve patients or patients with relapsed/refractory WM 
(27 patients in total), the most common AEs were rash, 
neutropenia, lymphopenia, and leukopenia. The trial 
was a short-term follow-up and the available dataset on 
AEs was limited, but the trial met the primary endpoint 
[169]. In clinical trials, diarrhea was reported in 7–44% of 
patients receiving tirabrutinib [127, 170, 171].

Fenebrutinib
In the phase II ANDES study in patients with active RA 
who were on fenebrutinib, the most common AEs were 
upper respiratory tract infections, nausea, headache, and 
anemia [172].

Conclusion and future directions
BTKI target BCR signaling cascades that are responsible 
for both normal and malignant B cells’ survival and pro-
liferation. BTKI binds to the ATP-binding site of BTK 
and blocks the phosphorylation of kinases in the BCR 
signaling cascade and also reduces B cell mitochondrial 
respiration resulting in less B cell activation, less secre-
tion of b cell-derived pro-inflammatory cytokines, and 
less co-activation of T cell. First, second, and third-
generation, reversible, and irreversible BTKIs, based on 
binding mode, are all developed and evaluated in clinical 
trials. Clearly, ibrutinib as a first-generation BTKI and the 
best-studied BTKI so far has already shown remarkable 
efficacy in the treatment of various B cell malignancies 
such as high-risk CLL, MZL, WM, relapsed/refractory 
MCL, and chronic GvHD. Ongoing clinical trials have 
clarified that BTKIs, particularly highly selective sec-
ond and third-generation BTKIs, can provide therapeu-
tic options in immune-mediated diseases where B cells 
and T cells are responsible for the disease etiopathogen-
esis. Application of BTKIs is still challenging due to the 
diverse AEs and as it cannot guarantee adequate safety 
and efficacy in immune-mediated diseases. Therefore, 
further research on the unexplored aspects of BTKI are 
strongly recommended.
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