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Abstract
Advances in DNA sequencing technologies, especially next-generation sequencing (NGS), which is the basis for 
whole-exome sequencing (WES) and whole-genome sequencing (WGS), have profoundly transformed immune-
mediated rheumatic disease diagnosis. Recently, substantial cost reductions have facilitated access to these 
diagnostic tools, expanded the capacity of molecular diagnostics and enabled the pursuit of precision medicine in 
rheumatology. Understanding the fundamental principles of genetics and diversity in genetic variant classification 
is a crucial milestone in rheumatology. However, despite the growing availability of DNA sequencing platforms, 
a significant number of autoinflammatory diseases (AIDs), neuromuscular disorders, hereditary collagen diseases, 
and monogenic bone diseases remain unsolved, and variants of uncertain significance (VUS) pose a formidable 
challenge to addressing these unmet needs in the coming decades. This article aims to provide an overview of the 
clinical indications and interpretation of comprehensive genetic testing in the medical field, addressing the related 
complexities and implications.
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Background
Advances in DNA sequencing technologies precipi-
tated by next-generation sequencing (NGS) have led to 
a revolution in the diagnosis of immune-mediated rheu-
matic diseases. This progress has not only facilitated the 
adoption of whole-exome sequencing (WES) in clini-
cal practice but also made whole-genome sequencing 
(WGS) feasible for molecular investigation. With the 
success of the Human Genome Project, various molec-
ular diagnostic tools have emerged, and the field has 
experienced exponential growth, enabling the pursuit 
of precision medicine [1]. Moreover, NGS has become 
more affordable, and therefore readily available, for 
both basic researchers and clinicians in recent years [2]. 
Among myopathies, genetic testing has redefined previ-
ous diagnoses of polymyositis due to the increased capa-
bility of identifying metabolic myopathies or muscular 
dystrophies [3]. Similarly, NGS has also allowed for the 
elucidation of congenital bone diseases and the iden-
tification of heritable connective tissue disorders [4, 5]. 
As access to genetic testing has progressively increased, 
rheumatologists have been able to expand the spectrum 
of 485 monogenic inborn errors of immunity (IEIs), 
especially primary immunoregulatory diseases (PIRDs) 
[6–8]. For instance, the genotype-first approach allowed 
for the identification of VEXAS syndrome (vacuoles, 
E1 enzyme, X-linked, autoinflammatory, somatic syn-
drome), a late-onset IEI [9], which, in turn, was found to 
be more prevalent than expected [10]. Emerging mono-
genic diseases are expanding the phenotypic spectrum of 
rheumatic diseases, disrupting conventional paradigms 
and underscoring the relevance of noncoding genetic 
variations [1].

Genetics analysis has resulted in the reclassification 
of some subgroups of rheumatic diseases according 
to similarities in molecular pathway activation [11]. 
Furthermore, the post-NGS era has driven our inter-
est in molecular diagnosis as an avenue for targeted 
therapy, family counseling, a deeper understanding 
of the pathophysiology of rheumatic diseases, and the 
exclusion of other mimicking conditions. Despite the 
progress in molecular diagnostics, many practicing 
physicians often struggle to stay up to date on various 
platforms, especially regarding genetic test interpre-
tation of uncertain or ambiguous cases. In addition, 
the molecular diagnosis of 60–70% of autoinflamma-
tory diseases (AIDs), neuromuscular disorders, heri-
table connective tissue diseases and monogenic bone 
diseases has not yet been elucidated, and variants of 
uncertain significance (VUS) pose a challenge to these 
unmet demands in the coming decades [12, 13]. This 
article aims to provide an overview of the clinical indi-
cations and interpretations of comprehensive genetic 
testing for rheumatologists.

Back to basics: rediscovering the genetic universe
Basic genetic concepts are fundamental for broadly 
understanding the main clinical indications, interpret-
ing the results and determining differences in genetic 
sequencing tests. The human genome is composed of 
3 billion base pairs (bp) of DNA in 22 pairs of autoso-
mal chromosomes and 1 pair of sex chromosomes that 
are responsible for our entire structural and functional 
framework encoded by approximately 20,000 genes. 
Our genetic material is composed of a specific sequence 
of purine (adenine, guanine) or pyrimidine (thymine, 
cytosine) nitrogenous bases that undergo histone modi-
fications (mainly acetylation and methylation), which 
regulate gene expression [14].

The transcription process initiates the cascade of 
events guiding targeted protein production. Ribonucleic 
acid (RNA) polymerase assumes a crucial role, first iden-
tifying the exact location for the transcriptional complex 
to assemble and then catalyzing the synthesis of RNA 
from DNA, culminating in single-stranded messenger 
RNA (mRNA) transcription [15]. The mRNA may be 
subsequently regulated in multiple stages by posttran-
scriptional events that may modulate gene expression 
[16]. Each gene encodes a specific protein, but only the 
exonic regions contain the sequences necessary for the 
translation process. The introns are removed through 
spliceosome-mediated cleavage shortly after transcrip-
tion to form mature mRNAs [17]. Several other subtypes 
of RNA, such as microRNAs (miRNAs), inhibitory RNAs 
(long noncoding RNAs [lncRNAs]), and small interfering 
RNAs (siRNAs), can also modulate protein synthesis at 
the nuclear level [15, 16].

Proteins are synthesized when a mature mRNA tran-
script is transported to the cytoplasm and undergoes 
translation by ribosomes in the endoplasmic reticulum. 
The base sequence of these coding regions is deciphered 
by the ribosomal machinery in informational units of 
three bases, known as codons. Each codon (Fig. 1) either 
encodes a specific amino acid (Fig. 2) or performs a regu-
latory function, such as initiating or terminating protein 
chain synthesis. Aminoacyl transport RNA (tRNA), often 
referred to as charged tRNA, is an RNA molecule that 
carries a specific amino acid and possesses an anticodon 
sequence that is complementary to the mRNA codon [15, 
16]. Figure 3 succinctly illustrates this pathophysiological 
process.

In a gene locus, each DNA copy carries a distinct 
sequence referred to as an allele. At autosomal loci, there 
are two alleles, each inherited from a different parent. 
Autosomal recessive diseases require alterations in both 
alleles, occurring either in homozygosity (both alleles 
carrying the same variant) or compound heterozygosity 
(each allele carrying different variants). Conversely, auto-
somal dominant diseases manifest with alterations in a 
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single allele carrying a heterozygous variant. In females, 
who have two X chromosomes, all loci within the X 
chromosome have two alleles. In contrast, in males, who 
have one X chromosome and one Y chromosome, each 
X and Y chromosome locus has only one allele. X-linked 
diseases may manifest in males when alterations occur 
in the unique X chromosome allele (hemizygosity) or, 
occasionally, in females when one of the X chromosome 
alleles is altered (heterozygosity) [18].

De novo genetic variants do not exist in parents and 
are frequently associated with autosomal dominant dis-
orders when one mutated allele is sufficient to induce 
the clinical pathological phenotype. Approximately 80% 
of de novo variants originate on the paternal allele and 
are associated with an advanced paternal age at concep-
tion [18]. All types of genetic variants can be categorized 

as constitutional (previously referred to as “germline”), 
when they are present in all cells, or as somatic, when 
they occur either shortly after the initial zygotic divi-
sions (early-onset mosaicism) or in adulthood (late-onset 
mosaicism) [19].

The Goldilocks effect describes the paradigm of achiev-
ing the ‘just right’ balance of gene-encoded protein func-
tion, especially with respect to wild-type variants [20]. 
Hypermorphic variants, known as gain-of-function 
variants, increase protein function. Hypomorphic vari-
ants are associated with different mechanisms, includ-
ing partial function caused by haploinsufficiency (when 
a single variant reduces the overall protein production 
by approximately half without interfering with healthy 
allele transcription), dominant negative effects (when a 
single variant interferes with healthy allele function), and 

Fig. 1 Classification of codons according to the genetic code. A adenine, Ala alanine, Arg arginine, Asn asparagine, Asp aspartic acid, C cytosine, Cys cys-
teine, G guanine, Glu glutamic acid, Gln glutamine, Gly glycine, His histidine, Ile isoleucine, Leu leucine, Lys lysine, Met methionine, Phe phenylalanine, Pro 
proline, Ser serine, START start codon, STOP stop codon, Thr threonine, Trp tryptophan, Tyr tyrosine, U uracil, Val valine. Created in BioRender.com
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complete loss of function (often associated with autoso-
mal recessive inheritance) [21].

There are several challenges in pedigree analysis and 
interpretation of the genetic basis of a condition within 
a family. First, incomplete penetrance, in which not every 
individual harboring the same pathogenic variant will 
consistently exhibit a clearly defined clinical phenotype, 
can occur. Second, clinical expressivity is variable, as 
several diseases exhibit substantial diversity in the mani-
festation of clinical features associated with a particular 
genetic variant.

Classification of gene variants
In recent decades, some genetic nomenclature has caused 
confusion due to misleading concepts. Traditionally, a 
“mutation” was defined as a permanent alteration in the 
nucleotide sequence, typically occurring at a frequency 
of less than 1%, while a “polymorphism” was defined as 
a variant with a frequency greater than 1%. To enhance 
clarity and align with recommendations from the Ameri-
can College of Medical Genetics and Genomics (ACMG), 
replacing these terms with more standardized and pre-
cise terminology is advisable. The ACMG recommends 
employing the term “variant” alongside the following 
modifiers: (i) pathogenic, (ii) likely pathogenic, (iii) VUS, 
(iv) likely benign, or (v) benign. This revised terminology 
better allows for clear and consistent communication in 
medical genetics, ensuring that the significance of genetic 
variations is conveyed accurately [22].

Variations may also be divided in the manner that they 
occur. Structurally, they can be classified as silent, mis-
sense, nonsense, frameshift, splicing, or reversion genetic 
variants. A silent variant is a variant in which a single 
nitrogenous base is substituted for another, resulting in a 
change in the codon but not affecting the encoded amino 
acid. Consequently, the protein remains unaltered. These 
variants can occur because different sequences of nitrog-
enous bases can encode the same amino acid. These 
variants are usually not pathogenic and are commonly 
referred to as “synonymous” [23].

Missense variants occur when a single nucleotide in 
the DNA code changes, replacing one amino acid with 
another within a protein. These variants may maintain 
normal protein expression or result in protein dysfunc-
tion or instability, potentially causing disease [24]. While 
most missense variants are often classified as VUS, in 
silico tools are valuable in predicting pathogenicity. 
Additionally, functional studies, posttranslational modi-
fications, protein‒protein interactions, and protein 3D 
features in database software contribute to a comprehen-
sive assessment [25].

A nonsense variant occurs when a single nitrogenous 
base change transforms an amino acid codon into a stop 
codon leading a protein to terminate or end its transla-
tion earlier than expected. This change halts protein 
synthesis, typically resulting in an unstable and dysfunc-
tional truncated protein, usually with loss-of-function 
characteristics. The position of nonsense variants plays 

Fig. 2 Classification of essential and nonessential amino acids. The figure illustrates nonpolar, polar, and electrically charged amino acids, such as acidic 
amino acids (negatively charged) and basic amino acids (positively charged). Created in BioRender.com
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an important role in protein function and predicting phe-
notype severity [26].

INDEL (insertion-deletion) are variants caused by 
insertions or deletions of nitrogenous bases. If a base 
pair insertion or deletion occurs in a multiple of three 
starting from the first “wobble” nucleotide, which repre-
sents the creation or disappearance of balanced codons, 
an “in-frame” variant is created; therefore, the protein 
sequence is altered exclusively at this position. However, 
if the number of inserted or deleted nucleotides is not 
a multiple of three or does not start at the beginning of 
a codon, the reading frame will be disrupted from that 
point on, causing a “frameshift” that completely changes 
the sequence and often creates a profoundly altered, 
unstable, dysfunctional protein. In these cases, a stop 
codon typically occurs within fewer than 100 nucleotides, 
resulting in prematurely truncated protein products [27].

Splicing variants are caused by alterations in the 
genetic rearrangement between exons and introns during 
mRNA formation. These variants lead to the production 
of modified mature mRNAs. Variants occurring at the 
first and second positions before the beginning of a new 

exon or at the first and second positions after the end of 
an exon, the so-called canonical splicing sites, are most 
frequently linked to splicing alterations. In most canoni-
cal splice site variants, the mRNA is either destroyed or 
translated into unstable and/or dysfunctional proteins 
[28, 29].

Reversion variants occur in exceptional cases of 
somatic mosaicism, triggered by the restoration of an 
inherited pathogenic variant to a normal state. In rever-
sion mosaicism, the reversion variant serves to partially 
or fully reinstate the effect of the primary disease-causing 
variant. The most common and simplest type of rever-
sion is a true back variant, which refers to the reversal of 
the constitutional variant site to the wild-type sequence 
[30]. The primary genetic variant types and their impact 
on the gene products are detailed in Table 1.

A variety of publicly or commercially available in silico 
pathogenicity prediction tools can help determine the 
chance that a sequence variant is harmful. These tools 
employ diverse computational algorithms to assess the 
variant’s impact on both nucleotide and amino acid 
sequences in the protein. It may predict the effect of 

Fig. 3 Chromosomes are structures that contain genes, and their genetic material is tightly coiled. Nitrogenous bases (cytosine, guanine, thymine, and 
adenine) form the fundamental components of each codon (a sequence of three nitrogenous bases) that can undergo epigenetic modifications, such as 
histone acetylation (exposure of genetic material to transcription factors) or methylation (nitrogenous bases encrypted to external factors). Various fac-
tors, such as siRNAs, miRNAs, and IncRNAs, can either enhance gene expression or inhibit gene production. Each gene encodes a single specific protein 
and undergoes multiple transcription stages in which a set of ribonucleoproteins, known as the spliceosome, degrades the noncoding regions (introns) 
and retains only the coding regions (exons) during mRNA synthesis. Created in BioRender.com. A adenine, C cytosine, G guanine, miRNA microRNA (regu-
lates gene expression), lncRNA long noncoding RNA (regulates gene expression), mRNA messenger RNA (encodes proteins), siRNA small interfering RNA 
(silencing gene expression), T thymine

 

http://BioRender.com


Page 6 of 14do Nascimento et al. Advances in Rheumatology           (2024) 64:59 

genetic variants on the structure or function of a pro-
tein without conducting functional tests. Several soft-
ware tools have been designed to assess different variant 
types [22]. Meta-predictors that utilize machine learning 
algorithms and integrate different sources of data, such 
as REVEL (rare exome variant ensemble learner) and 
BeyesDel, have gained prominence [22, 38, 39]. Caution 
is advised when using these prediction tools, and one 
should refrain from relying solely on them to make clini-
cal decisions. The term “damaging” does not necessarily 
imply “pathogenic”, since a variant that damages a gene 
may not be inherently harmful to an individual’s health 
[40].

An increasing number of variants are being depos-
ited in population databases. These databases play an 
essential role in classifying gene variants, assessing 

their pathogenicity, and aggregating diverse sources 
of validated articles to predict their population risk of 
appearance. Table 2 provides examples of key databases 
that can be valuable in the assessment of gene variants 
[41–45]. Clinicians can also use these different tools to 
interpret genetic variations and their connections with 
phenotypes.

Types of genetic tests
Clinical genetic testing has become increasingly acces-
sible and cost-effective, providing a variety of techniques 
with unique advantages and limitations. Sanger sequenc-
ing (SS), NGS targeted gene panels, WES, WGS, and 
chromosomal analyses (CAs) are the primary options for 
achieving a genetic diagnosis [46, 47]. Physicians should 
choose the appropriate methodology according to the 

Table 1 Primary genetic variant types. Herein, the wild-type gene has a short nucleotide sequence that encodes a protein with an 
amino acid sequence that reads “I am rheumatologist”. Different variants disrupt this sequence in different ways. The underlined letters 
correspond to variants of either nucleotides within the codon regions or amino acids
Variant Example
Wild-type 
protein

Protein:     I  A  M  R  H  E  U M  A  T   O  L  O  G  I  S   T   *
Nucleotide: AAT ATG TAC AAC GCA ATC GAA ATA AAC TAC GAC TGA GTA TGA CCC ATG CGC GAC TAG

Nonsense
(stop codon)

Protein:     I  A  M  R  H  E  U   M *
Nucleotide: AAT ATG TAC AAC GCA ATC GAA ATA AAC TAG GAC TGA GTA TGA CCC ATG CGC GAC TAG
Example: p.C135X classified as PSMB8 pathogenic variant causing CANDLE syndrome. Changing cysteine (C) at amino acid 135 
produce a stop codon [31].

Missense
(point mutation)

Protein:     I  A  M  R  M  E   U  M A  T   O  L O  G  I  S   T  *
Nucleotide: AAT ATG TAC AAC GCA AAC GAA ATA AAC TAC GAC TGA GTA TGA CCC ATG CGC GAC TAG
Example: p.(Met694Val) is classified as a pathogenic variant in the MEFV gene, causing FMF. This variant involves the substitution of 
methionine (Met) with valine (Val) at position 694, disrupting the pyrin protein [32].

Deletion
(in-frame)

Protein:     I  A  M  R  H  E  U  M A  T   O     G    I  S  T  *
Nucleotide: AAT ATG TAC AAC GCA ATC GAA ATA AAC TAC GAC TGA --- --- CCC ATG CGC GAC TAG
Example: p.(Ala125Arg176del) is classified as a pathogenic variant in the MVK gene, causing MKD. This variant involves a deletion of 
51 nucleotides between alanine (Ala) 125 and Arginine (Arg) 176, resulting in truncation of the MVK protein [33].

Deletion
(frameshift)

Protein:     I  A  M  R  H  E  U  M A  T   O     K  B   U  D…
Nucleotide: AAT ATG TAC AAC GCA ATC GAA ATA AAC TAC GAC TGA --- --- --CAT GCG CGA CTA G…
Example: p.(His91Leufs*12) classified as ADA 2 pathogenic variant causing DADA-2. Frameshift deletion at position 91, resulting in 
the substitution of histidine (His) into leucine (Leu) and the creation of a premature stop codon 12 nucleotides downstream [34].

Splicing Protein:    * I  A  M    R   H  E  U  M   A  T   O  L  O    G    I      S  T
Nucleotide: AGT ATG TAC AAC GCA ATC GAA ATA AAC TAC GAC TGA GTA TGA CCC ATG CGC GAC TAG
Example: c.671+5G>A classified as IKBKG pathogenic variant causing NDAS syndrome. Guanine (G) is substituted by adenine (A) at 
the fifth nucleotide after position 671 in the DNA coding sequence. This intronic variant disrupts the coding region, resulting in a 
protein that is absent [35].

Reversion Germline variant
Protein:      I   A   M   R M  E  U  M  A  T   O  L O   G    I   S   T  *
Nucleotide: AAT ATG TAC AAC GCA AAC GAA ATA AAC TAC GAC TGA GTA TGA CCC ATG CGC GAC TAG
Spontaneous somatic variant
Protein:     I  A  M  R  H   E  U  M  A  T  O  L  O   G    I   S  T  *
Nucleotide: AAT ATG TAC AAC GCA ATC GAA ATA AAC TAC GAC TGA GTA TGA CCC ATG CGC GAC TAG
Example: c.995C>T is classified as a pathogenic variant in the WASP gene, causing WASP syndrome. In the germline, the variant re-
sults in a cytosine (C) being substituted by thymine (T) at position 995 of the coding DNA sequence, leading to a disrupted protein. 
However, a spontaneous somatic variant, 995C>T>C, substitutes thymine back to cytosine, restoring the wild-type protein [36].

ADA 2 adenosine deaminase 2, CANDLE chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature, DADA2 deficiency of adenosine 
deaminase 2, FMF familiar mediterranean fever, IKBKG Inhibitor of nuclear factor kappa B kinase regulatory subunit gamma, MEFV pyrin, MKD mevalonate kinase 
deficiency, MVK mevalonate kinase, NDAS NEMO-deleted exon 5 autoinflammatory syndrome, PSMB8 proteasome 20S subunit beta 8, WASP wiskott-aldrich. Adapted 
from Torgerson et al. Stiehm’s Immune Deficiencies 2020 [37]
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specific clinical context and other factors, such as the 
scope of analysis, cost constraints, and the nature of the 
genetic condition under investigation. Table  3 lists the 
characteristics, including the strengths and limitations, of 
each method [12, 48].

Sanger sequencing (SS)
In the 1970s, a method originally described by Freder-
ick Sanger was the gold standard for identifying single-
gene disorders [49]. SS involves a manual analysis process 
in which nucleotide pairs are examined exon by exon, 
which limits automation. SS involves the construction 
of specific DNA primers for each region of interest that 
direct in vitro DNA replication by DNA polymerase. 
Chain-terminating dideoxynucleotides are randomly 
incorporated in this process, generating DNA fragments 
of different sizes that are subsequently analyzed using 

gel electrophoresis and, more recently, capillary elec-
trophoresis to detect genetic variants [50]. SS is highly 
accurate but is limited to specific genes and may be too 
time-consuming and costly for broader analysis. Notably, 
this method may fail to detect copy number variations 
(CNVs), such as microdeletions or microduplications, or 
somatic variants characterized by a low variant allele fre-
quency (VAF) [48].

Next-generation sequencing targeted gene panels
Unlike in SS, multiple genes can be simultaneously ana-
lyzed in NGS using an automated approach. When sev-
eral potential monogenic causes fit a well-established 
phenotype, the use of NGS becomes necessary, because 
it is cost effective and faster. Currently, there are targeted 
panels, which detect fewer genes, and expanded panels; 
the choice of panel depends on the specific cause under 
investigation [51]. There are several NGS platforms, and 
each platform has unique steps for sample preparation, 
library elaboration and sequencing. DNA extraction from 
a biological sample followed by fragmentation generally 
constitutes the initial step. Next, the genomic regions of 
interest are isolated and enriched (a step often referred to 
as capture); for targeted gene panels, a limited subset of 
genes, varying from a few to hundreds, may be enriched. 
Linkers are affixed to the termini of DNA fragments, and 
these fragments are tethered to a solid support, com-
monly a bead, where they are typically amplified through 
an emulsion polymerase chain reaction (PCR) method. In 
this process, the information derived from nitrogenous 
bases is transformed into binary sequences, and the out-
come is computationally analyzed, often resulting in a 
substantial volume of data [37]. Figure 4 provides a con-
cise overview of the key differences between SS and NGS 
methods [37, 50].

Some advantages of targeted gene panels include the 
ability to study multiple regions and genes of the genome 
(more than can be studied with SS) at a relatively low 
cost (generally lower than that of WES or WGS). More-
over, mosaicisms with lower VAFs and CNVs, such as 
microdeletions and microduplications, may be detected. 
However, pseudogenes may lead to misinterpretation of 
variant results [48].

Whole-exome sequencing
WES covers the coding regions of the genome (exons), 
making it an automated method that generates a substan-
tial volume of data for bioinformatics analysis. When the 
clinical phenotype is nonspecific for a single causative 
gene, a defined group of genes or even a unique metabolic 
pathway, WES has been shown to be a pivotal strategy for 
investigating a wide spectrum of genetic disorders. The 
steps of WES steps are very similar to those of NGS tar-
geted gene panels, as discussed above. The isolation and 

Table 2 Population, disease, and sequence databases. These 
databases are valuable tools for querying identified gene 
variants, as they can be continually updated with new insights 
related to population frequency, functional validation studies, 
and key references from relevant research
Genetic database Description
ClinVar A repository of statements re-

garding the clinical importance 
of human genetic variations and 
their connections with pheno-
types [44].

http://www.ncbi.nlm.nih.gov/clinvar

OMIM A database of human genetic in-
formation, including genes and 
genetic conditions, along with a 
comprehensive representation 
of various examples [43].

http://www.omim.org

gnomAD A website focused on aggre-
gating and harmonizing both 
exome and genome sequenc-
ing data from a wide variety of 
large-scale sequencing projects 
and making summary data 
available for the wider scientific 
community [41].

https://gnomad.broadinstitute.org/

VarSome A database of search engines, 
aggregators and impact analysis 
tools for human genetic varia-
tion and a community-driven 
project aiming at sharing global 
expertise on human variants 
[41].

https://varsome.com/

Infevers A database gathering updated 
information on genetic variants 
responsible for hereditary auto-
inflammatory diseases [42].

https://infevers.umai-montpellier.fr/

Human Gene Mutation Database A database containing an-
notations for genetic variants 
published in scientific literature. 
Access to this database requires 
a paid subscription [45].

http://www.hgmd.org

Adapted from Gudmundsson et al. [41–45]

http://www.ncbi.nlm.nih.gov/clinvar
http://www.omim.org
https://gnomad.broadinstitute.org/
https://varsome.com/
https://infevers.umai-montpellier.fr/
http://www.hgmd.org
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fragmentation of genomic DNA are followed by the addi-
tion of oligonucleotide adapters. Fragmented adapter-
ligated DNA libraries necessitate an additional positive 
selection capture step to prevent off-target sequencing of 
noncoding genome regions. The ideal result is equal cap-
ture of all exome regions; however, enrichment tends to 
be uneven [52]. As most known monogenic defects are 
located within coding regions, WES is a valuable and 
relatively accessible diagnostic tool that is more afford-
able than WGS. Nevertheless, due to the large amount of 
data, VUS frequently emerge, posing a challenge in inter-
pretation. WES allows for the study of large CNVs and 
high-grade mosaicism, despite its limitations in identify-
ing relevant intronic variants, low-grade mosaicisms and 
small CNVs [53].

Whole-genome sequencing
WGS covers most of the genome, encompassing coding 
and noncoding regions. However, its widespread avail-
ability is limited by its high cost and the relatively low 
number of known intronic pathogenic variants; therefore, 
this application is currently indicated for clinical research 
purposes [54]. The WGS methodology closely resembles 
that of WES, with the notable exception of the absence 
of an exome enrichment step. The process involves DNA 
fragmentation, attachment of linker sequences, and sub-
sequent massively parallel sequencing. WGS technolo-
gies can be categorized on the basis of their capacity to 
read short sequences (< 1 kilobase) versus long sequences 
(> 1 kilobase). Long-read sequencing, despite its relative 
clinical unavailability, shows promise for mitigating DNA 
fragmentation, offering deeper reads without sacrificing 
any nucleotide bases during the process [55, 56]. WGS is 

more effective at detecting CNVs than WES is and has the 
potential to identify novel disease-causing gene variants. 
However, due to the “big data” analysis involved, storing 
raw data for future reanalysis is a challenge. Moreover, 
the high cost, coupled with the significant volume of VUS 
and unknown intronic variants, currently presents sub-
stantial hurdles to larger routine laboratory use [56].

Chromosomal analyses
Various techniques can be employed to assess CAs, such 
as karyotyping, microarray analysis, and fluorescence in 
situ hybridization (FISH). While karyotyping can reveal 
large deletions, duplications, translocations and inver-
sions, it is limited in the identification of microdeletions, 
microduplications, or smaller rearrangements that may 
be detectable only by microarray or FISH [57]. CA tech-
niques enable the identification of chromosomal losses 
and gains and are recommended as first-tier approaches, 
particularly for syndromic phenotypes characterized 
by dysmorphic features, congenital malformations, fail-
ure to thrive or neurodevelopmental disorders [58]. The 
generally fast turnaround time and lower cost of these 
methods compared to WES or WGS represent significant 
advantages. However, confirming CNVs of uncertain sig-
nificance can be challenging, and the detection of unbal-
anced chromosomal rearrangements smaller than 100 kb 
may be challenging [59].

Practical approach to order genetic tests
Early genetic sequencing in selected patients, whether 
through preestablished multigene panels or WES, is 
indicated for diagnosing monogenic diseases. Given the 
extensive clinical spectrum of genetic diseases of interest 

Table 3 Currently available genetic tests
Category SS CA NGS Panels WES WGS
Number of 
genes

1–10 ≅ 20.000 10–300 ≅ 20.000 All genome

Data size 
(gigabytes)

0.01 5–10 <1 5–10 50–200

Estimated cost US$10–20 US$800–1000 US$200–500 US$800–1000 US$1500–2500
Strengths • Low cost

• Fast result time
• >99% accuracy

• Detection of CNVs
•  Detection of 

absence of 
heterozygosity

•  Simultaneous analy-
ses of multiple genes

•  Detection of lower-
grade mosaicism

•  Covers all the coding regions of 
the genome

•  Detection of high-grade 
mosaicism

• Data reanalysis
• Detection of large CNVs

• Covers the whole genome
•  Best for small and large 

CNV identification
•  Detection of high-grade 

mosaicism
• Data reanalysis

Weaknesses •  Limited 
coverage of 
sequences

•  CNV 
identification

•  CNVs of uncertain 
significance

•  Balanced structural 
variants

•  CNVs smaller than 
100 kb

•  Poor coverage of 
sequences shared 
with pseudogenes

• CNV identification
•  Inability to store data 

for reanalysis

• High cost
• Identification of small CNVs
• High number of VUS identified
• Inability to detect intronic variants

• High cost
•  High number of VUS 

identified
• Storage limitations

CA chromosomal analysis, CNV copy number variation, NGS next-generation sequencing, SS Sanger sequencing, WES whole-exome sequencing, WGS whole-genome 
sequencing

Adapted from Schnappauf et al. and Chinn et al. [12, 48]
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Fig. 4 General methods of DNA sequencing encompass both traditional Sanger sequencing (a) and next-generation sequencing (b). a Sanger sequenc-
ing involves PCR amplification of genomic DNA fragments containing gene coding regions, followed by sequencing using labeled di-deoxy nucleotides. 
The amplified fragments are separated by capillary electrophoresis to generate a chromatogram, facilitating sequence determination. b In contrast, 
next-generation sequencing techniques, such as shotgun sequencing, begin with fragmentation of genomic DNA by sonication or enzymatic methods. 
Linkers are added to DNA fragments, which are then immobilized on solid supports like beads. Emulsion PCR amplifies these fragments, with labeled 
deoxy nucleotides flowing into reaction chambers containing polymerase and reaction buffers. Incorporation of each nucleotide emits detectable light 
or ions, allowing real-time sequencing. This approach enables high-throughput sequencing via cyclic-array methods, where millions of immobilized PCR 
colonies (“polonies”) facilitate parallel processing of sequencing reactions. Imaging-based detection of fluorescent labels during enzymatic extensions 
enables simultaneous acquisition of sequencing data across all features, resulting in contiguous sequencing reads for each array feature. Figure modified 
from Shendure and Torgerson et al. [37, 50]
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in rheumatology, it is challenging to establish universal 
guidelines and warning signs. The Jeffrey Modell Founda-
tion has devised several warning indicators for IEIs that 
can aid in matching a specific phenotype with its related 
molecular diagnosis (Table 4) [60, 61].

In the pre-NGS era, a molecular assay targeting an indi-
vidual gene typically represented the conclusive phase of 
the diagnostic process, after clinical, laboratory, and his-
tological assessments aimed at delineating the most likely 
diagnosis. As NGS becomes more integrated into routine 
clinical diagnostics, sequencing methods are frequently 
employed at an earlier stage, immediately following a 
thorough clinical evaluation [3].

In addition, as the costs of genetic tests have decreased, 
there has been a continuous increase in the identification 
of new variants responsible for novel Mendelian diseases 
[62]. Targeted gene panels focusing on heritable extra-
cellular matrix diseases and thoracic aortic aneurysms 
played a pivotal role in elucidating the genetic under-
pinnings of autosomal dominant diseases, such as Mar-
fan syndrome, vascular Ehlers–Danlos syndrome, and 
Loeys–Dietz syndrome, that were previously considered 
extremely rare and were revealed to be notably prevalent. 
Molecular diagnostics serve as a valuable tool for dis-
tinguishing these conditions from vasculitis mimickers, 
aiding in accurate diagnosis and preventing unnecessary 
immunosuppression [63]. Moreover, with the increased 
availability of genetic panels, polymyositis has become an 
increasingly rare entity due to the recognition of inher-
ited neuromuscular diseases [64].

The identification of monogenic bone diseases can be 
an integral part of investigating unexplained reductions 
or increases in bone mineral density, bone mineralization 
or bone turnover. Genetic sequencing is fundamental 
for corroborating the clinical diagnoses of patients with 
osteogenesis imperfecta, juvenile Paget disease, or fibro-
dysplasia ossificans progressiva [65].

Notably, it is imperative that any genetic sequencing 
results are consistently interpreted in light of the clinical 
phenotype and the identified molecular pathway. Figure 5 
presents a suggested algorithm for molecular investiga-
tion. Numerous parameters must be considered in the 
classification and interpretation of a variant. Zygosity is 
a crucial factor, as monoallelic variants can cause auto-
somal dominant conditions, whereas biallelic variants 
contribute to recessive disorders. The assessment of 
pathogenicity hinges upon several facets, including pop-
ulation frequencies of the variants in genome databases, 
computational and in silico predictions, functional data, 
segregation analysis within family pedigrees, allelic data, 
functional insights, and patient phenotype. It is essential 
to emphasize that these data should not be interpreted in 
isolation and must always be evaluated within the context 
of the relevant metabolic pathway [22].

Clinicians should not categorically attribute a VUS 
as the primary cause of a condition solely based on its 
apparent clinical relevance, as variant pathogenicity clas-
sifications evolve over time, encompassing shifts toward 
both increased and reduced pathogenicity [66]. Only a 
small proportion of VUS are likely to ultimately demon-
strate pathogenicity upon subsequent evaluation. Unfor-
tunately, the clarification of this uncertainty is often a 
protracted process. In silico predictors, proximity to pre-
viously described hotspots, functional investigations, and 
parental segregation studies can provide valuable assis-
tance in the clinical decision-making process [67].

One of the most efficacious approaches for obtain-
ing insights into the clinical importance of a VUS or for 
discerning compound heterozygosity in the trans con-
figuration is familial segregation analysis [68]. Segrega-
tion analysis, which studies the inheritance pattern of a 
variant within a family, may be a valuable approach to 
determine the pathogenicity of variants [69]. Segrega-
tion analysis can also aid in the identification of de novo 
variants, providing stronger evidence for pathogenicity. 
Additionally, it can facilitate the reclassification of rare 
variants as benign or likely benign. Hence, this step is 
pivotal in refining the precise interpretation of genetic 
findings [70].

Limitations of genetic analysis
Somatic mosaicism may be an explanation for nega-
tive genetic analysis results. In these cases, the tissue or 
cell containing the cryptic variant may have not been 
assessed, or the VAF in peripheral blood may be so low 
that even WES or WGS may lack the requisite sensitiv-
ity to detected it. Various NGS panels have endeavored to 
achieve the detection of variants with progressively lower 
VAFs, exemplified by the search for UBA1 (ubiquitin like 
modifier activating enzyme 1) in the context of VEXAS 
syndrome diagnosis [71] or for the LEMD3 (LEM domain 

Table 4 IEI warning signs from the Jeffrey Modell Foundation: 
clues for diagnosis
1. Recurrent infections: severe, persistent, or atypical infections; 
difficulties in controlling EBV infections; bronchiectasis; and infections 
not explained by known factors such as COPD, asthma, HIV, diabetes, 
hyposplenism, asplenia, hematological malignancy, or treatments 
involving glucocorticoids or DMARDs
2. Rheumatic disorders: early-onset JIA; sarcoidosis; enteropathic ar-
thritis; benign lymphoproliferation; and extra-articular conditions such 
as ILD, IBD, and pustular psoriasis
3. Malignancies: lymphoma, gastric cancer, and NMSC
4. Family history: PID, rheumatic disorders, IBD or related enteropa-
thies, and lymphoma
COPD chronic obstructive pulmonary disease, DMARD disease-modifying 
antirheumatic drug, EBV Epstein–Barr virus, HIV human immunodeficiency virus, 
IBD inflammatory bowel disease, IEI inborn error of immunity, ILD interstitial 
lung disease, JIA juvenile idiopathic arthritis, NMSC nonmelanoma skin cancer, 
PID primary immunodeficiency disease [60, 61]
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containing 3), KRAS (kirsten rat sarcoma viral oncogene 
homolog), MAP2K1 (mitogen-activated protein kinase 
kinase 1) and SMAD3 (SMAD family member 3) genes in 
melorheostosis [72].

Structural variants (SVs) are a category of genetic alter-
ations exceeding 50 bp in length, with some extending up 
to several megabases (Mb). This category encompasses 
various changes, including CNVs, deletions, duplications, 
insertions, inversions, mobile element insertions (trans-
posons), translocations, and complex rearrangements. 
Short-read sequencing technologies may not detect some 
SVs due to their limited precision and accuracy. Emerg-
ing techniques employing long-read sequencing (100–
300 bp long) are being implemented to bypass the genetic 
material sonication process and prevent nucleotide base 
losses using nanopore sequencing [13, 73].

While nucleotide repeats form the basis of 3% of the 
human genome, certain repeat sequences known as 
short tandem repeats are associated with specific dis-
eases and may remain undetectable using conventional 
tools. Another limitation of standard platforms arises 
from pseudogenes, which are segments of DNA structur-
ally resembling genes but lacking the capacity for protein 
encoding, introducing several biases in regular analysis 
[53].

Diseases or variants that have never been previ-
ously documented in databases can complicate the 

management of these conditions, which often manifest 
as ultrarare diseases. One strategy to overcome this chal-
lenge is to periodically reanalyze the genetic sequence. 
Several groups have shown that reanalyzing raw genomic 
data can boost diagnostic yields by 5–26% for WES and 
4–11% for WGS [13, 74]. Despite the promising advances 
beyond broad-spectrum genetic sequencing methodolo-
gies that will be made in the coming decades, some cases 
are exceedingly intricate and transcend the scope of the 
general medical practitioner. In these cases, the pursuit 
of interdisciplinary collaboration, knowledge exchange 
with specialists, and referral to molecular diagnostic ref-
erence centers seems more appropriate.

Conclusions and future perspectives
The increasing accessibility of genetic tests enhances 
diagnostic yield and elucidates the molecular under-
pinnings of rheumatic diseases [11]. Advances in these 
techniques have reshaped our understanding of the 
pathophysiology of rheumatic disorders, especially AIDs, 
neuromuscular disorders, hereditary extracellular matrix 
diseases, and monogenic bone diseases.

However, as we rely more on these tools, new chal-
lenges emerge, such as interpreting VUS, detecting 
mosaicism, and identifying SVs. Promising solutions 
include complementing short-read genome sequencing 
with RNA sequencing, long-read genome sequencing, 

Fig. 5 Suggested algorithm for molecular investigation. GOF gain-of-function, LOF loss-of-function, NGS next-generation sequencing, WES whole-exome 
sequencing, WGS whole-genome sequencing; *metabolic myopathies, muscular dystrophies, congenital bone diseases, heritable connective tissue dis-
orders, or inborn errors of immunity can be considered in the phenotyping
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metabolomics, proteomics, and DNA methylation profil-
ing. Furthermore, novel functional tests are essential for 
validating novel genetic variant results [13, 73]. Machine 
learning can serve as a strategy for gathering extensive 
datasets encompassing various types of biomarkers to 
complement genetic sequencing [75, 76].

A significant hindrance in diagnosing rare patients is 
the cost, given that some genetic tests are still research-
based and not yet integrated into healthcare systems. 
Efforts are required to increase the accuracy and afford-
ability of high-throughput technologies, bridging the 
diagnostic gap for undiagnosed patients. A delicate bal-
ance is imperative when considering the cost-effective-
ness of molecular diagnoses and personalized targeted 
therapies as we progress toward precision medicine [77, 
78].
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